[最大流]增广路算法Edmonds-Karp

最大流可以看做是把一些东西从源点s送到汇点t,可以从其他的点中转,每条边最多只能输送一定的物品,求最多可以把多少东西从s送到t,这样的问题就是最大流问题。

如图


节点1为源点,节点6位汇点

每一条边上的数字即为这条边最多能输送的数量,也称为容量。(对于不存在的边,容量为0)

这个图能够求出的最大流为23

从源点开始,送12到2、送11到3,2送12到4,3送7到4、送4到5,4送19到6,5送4到6

最终6接受到了一共23个物品,即最大流为23

这时,实际运送的物品量即为流量

有些边的流量不一定等于容量,也就是还可以在这条路上再流多几个物品,这时,容量减去流量的值,即为残量

残量会单独构成网络,但不一定联通s和t,这样的网络称作残量网络。

那么,应该怎么求最大流呢?

这里介绍一个最基础的算法,增广路算法。

在图上,从s开始,任意取一条路来走,走到t,增加流量。重复这样的操作。但是很快,我们可以发现,这样的做法不一定是最优的做法。所以,我们要给它一个改进的机会。

在图上建立反向弧,将容量设置为0,当从节点u流向节点v时,反向弧的流量也相应等于这条弧的流量的相反数。

那么,通过搜索,每一次寻找一条路径,使得流向汇点的总流量增加,这个过程叫做增广,走过的路为增广路。

可以证明,通过这个过程,经过多次的增广,必然会陷入不能增广的情况,这时,流向汇点的总流量即为最大流。

只要残量网络中s和t是连通的,必然会得到一条增广路径。

找路径最简单的办法就是用DFS,但是对于一些具有刁钻数据的网络流题目,DFS可能会空间溢出或者超时,所以使用到BFS,也就是题目中说的Edmonds-Karp算法。

代码如下:

struct Edge {
    int from, to , cap , flow;
    Edge(int u, int v, int c, int f) : from(u), to(v), cap(c), flow(f) {}
};

struct EdmondsKarp {
    int n, m;
    vector < Edge > edges;
    vector < int > G[MAXN];
    int a[MAXN];
    int p[MAXN];

    void init(int n) {
        for(int i = 0; i < n; ++i) {
            G[i].clear();
        }

        edges.clear();
    }

    void AddEdge(int from, int to, int cap) {
        edges.push_back(Edge(from, to, cap, 0));
        edges.push_back(Edge(to, from, 0, 0)); //反向弧
        m = edges.size();
        G[from].push_back(m - 2);
        G[to].push_back(m - 1);
    }

    int Maxflow(int s, int t) {
        int flow = 0;

        for(;;) {
            memset(a, 0, sizeof a);
            queue < int > Q;
            Q.push(s);
            a[s] = INF;//初始源点有无限个物品

            while(!Q.empty()) {
                int x = Q.front();
                Q.pop();

                for(int i = 0; i < G[x].size(); ++i) {
                    Edge &e = edges[G[x][i]];

                    if(!a[e.to] && e.cap > e.flow) { // 查找任意边流动物品
                        p[e.to] = G[x][i];
                        a[e.to] = min(a[x], e.cap - e.flow);
                        Q.push(e.to);
                    }
                }

                if(a[t]) { //如果有增广路,退出
                    break;
                }
            }

            if(!a[t]) { //没有增广路,现在的结果即为最大流
                break;
            }

            for(int u = t; u != s; u = edges[p[u]].from) { // 反向修改流量
                edges[p[u]].flow += a[t];
                edges[p[u] ^ 1].flow -= a[t];
            }

            flow += a[t];//增加总流量
        }

        return flow;
    }
} ek;
代码中有一个技巧,每一条弧和其反向弧对应存在一起,那么,边i的反向弧就是i^1

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值