【容斥原理】

本文介绍了一道关于灯泡开关的问题,V_Dragon对n盏灯进行三次操作,每次选择一个质数作为开关条件。通过容斥原理,计算最后亮着的灯的数量。文章提供了思路、计算公式以及如何处理非质数情况,包括代码实现细节。
摘要由CSDN通过智能技术生成

题目描述:

V_Dragon有n盏电灯泡,编号为1-n,每个灯泡都有一个开关,那么问题来了

1.所有灯泡初始时为不亮的;

2.V_Dragon分别进行三次操作;

3.每次操作他都选一个质数x,将编号为x和x的整数倍的灯泡的开关都拨动一下(如果灯为亮,那么拨动以后灯为不亮,如果灯不亮,拨动以后变为亮)

求最后亮着的灯的数量;


输入:

输入T表示T组测试数据(1<=T<=100)

接下来T组数据

每组第一行一个n表示灯泡各数(1<=n<=10^9)

第二行三个数a,b,c表示V_Dragon每次选择的数(1<=a,b,c<=10^6)(a,b,c全为质数且a,b,c两两互不相等)


输出:

最后亮着的灯的个数


样例输入:

1

30

2 3 5


样例输出:

15


思路:容斥定理的应用,直接对次数进行计算;


统计次数是加上奇数次(a,b,c,abc)出现的,减去偶数次(ab,ac,bc)出现的;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值