题目描述:
V_Dragon有n盏电灯泡,编号为1-n,每个灯泡都有一个开关,那么问题来了
1.所有灯泡初始时为不亮的;
2.V_Dragon分别进行三次操作;
3.每次操作他都选一个质数x,将编号为x和x的整数倍的灯泡的开关都拨动一下(如果灯为亮,那么拨动以后灯为不亮,如果灯不亮,拨动以后变为亮)
求最后亮着的灯的数量;
输入:
输入T表示T组测试数据(1<=T<=100)
接下来T组数据
每组第一行一个n表示灯泡各数(1<=n<=10^9)
第二行三个数a,b,c表示V_Dragon每次选择的数(1<=a,b,c<=10^6)(a,b,c全为质数且a,b,c两两互不相等)
输出:
最后亮着的灯的个数
样例输入:
1
30
2 3 5
样例输出:
15
思路:容斥定理的应用,直接对次数进行计算;
统计次数是加上奇数次(a,b,c,abc)出现的,减去偶数次(ab,ac,bc)出现的;