Spark Core——RDD

版权声明:原创文章,转载请注明出处 https://blog.csdn.net/baidu_35901646/article/details/81592144

概念

RDD(Resilient Distributed Dateset),弹性分布式数据集

RDD 的五大特性

1. RDD 是由一系列的 partition 组成的。

2. 函数是作用在每一个 partition(split)上的。

3. RDD 之间有一系列的依赖关系。

4. 分区器是作用在 K,V 格式的 RDD 上。

5. RDD 提供一系列最佳的计算位置。

RDD概念模型图解

RDD详解

  1. textFile 方法底层封装的是读取 MR 读取文件的方式,读取文件之前先 split,默认 split 大小是一个block 大小
  2. RDD  实际上不存储数据
  3. RDD 提供计算最佳位置,体现了数据本地化。体现了大数据中“计算移动数据不移动”的理念
  4. 什么是 K,V 格式的 RDD?如果 RDD 里面存储的数据都是二元组对象,那么这个 RDD 我们就叫做 K,V 格式的 RDD
  5. 哪里体现 RDD 的弹性(容错):partition 数量,大小没有限制,体现了 RDD 的弹性。RDD 之间依赖关系,可以基于上一个 RDD 重新计算出 RDD
  6. 哪里体现 RDD 的分布式,RDD 是由 Partition 组成,partition 是分布在不同节点上的

 

很形象的一幅图描述RDD

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页