[caioj]【计算几何】面积 计算几何 叉积

【题意】
在一个平面坐标系上随意画一条有n个点的封闭折线(按画线的顺序给出点的坐标),保证封闭折线的任意两条边都不相交。最后要计算这条路线包围的面积。

题解:

用叉积有关知识解决。重要结论:abs(三点的叉积)/2为这三点围成的三角形的面积。
简要证明:
这里写图片描述
上图中,黑色的三角形面积为矩形-三个三角形,设数,计算,合并同类项化简后得到的结果就为叉积/2。
有人会想,叉积有负数,怎么办?没事,直接算,把多边形化为若干个三角形面积之和,最后绝对值一下即可。至于为什么?我也说不清,只能感性的理解。

代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
using namespace std;
struct node{double x,y;}a[1010];
double multi(node p1,node p2,node p0)
{
    double x1,y1,x2,y2;
    x1=p1.x-p0.x;
    y1=p1.y-p0.y;
    x2=p2.x-p0.x;
    y2=p2.y-p0.y;
    return x1*y2-x2*y1;
}
int n;
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)scanf("%lf%lf",&a[i].x,&a[i].y);
    double ans=0.0;
    for(int i=3;i<=n;i++)
    ans+=multi(a[i],a[i-1],a[1]);
    printf("%.4lf",abs(ans)/2.0);   
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值