【题意】
在一个平面坐标系上随意画一条有n个点的封闭折线(按画线的顺序给出点的坐标),保证封闭折线的任意两条边都不相交。最后要计算这条路线包围的面积。
题解:
用叉积有关知识解决。重要结论:abs(三点的叉积)/2为这三点围成的三角形的面积。
简要证明:
上图中,黑色的三角形面积为矩形-三个三角形,设数,计算,合并同类项化简后得到的结果就为叉积/2。
有人会想,叉积有负数,怎么办?没事,直接算,把多边形化为若干个三角形面积之和,最后绝对值一下即可。至于为什么?我也说不清,只能感性的理解。
代码:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
using namespace std;
struct node{double x,y;}a[1010];
double multi(node p1,node p2,node p0)
{
double x1,y1,x2,y2;
x1=p1.x-p0.x;
y1=p1.y-p0.y;
x2=p2.x-p0.x;
y2=p2.y-p0.y;
return x1*y2-x2*y1;
}
int n;
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%lf%lf",&a[i].x,&a[i].y);
double ans=0.0;
for(int i=3;i<=n;i++)
ans+=multi(a[i],a[i-1],a[1]);
printf("%.4lf",abs(ans)/2.0);
}