5217: [Lydsy2017省队十连测]航海舰队 二维fft

本文介绍了一个关于舰队在网格图中航行的问题,并使用FFT算法来计算最多可以获得的海底矿藏数量。文章详细解释了如何通过二维FFT算法进行计算,同时提供了一个具体的C++实现示例。

Description
Byteasar 组建了一支舰队!他们现在正在海洋上航行着。海洋可以抽象成一张n×m 的网格图,其中有些位置是“.”,表示这一格是海水,可以通过;有些位置是“#”,表示这一格是礁石,不可以通过;有些位置是“o”,表示这一格目前有一艘舰,且舰离开这一格之后,这一格将变为“.”。这些“o” 表示Byteasar 的舰队,他们每天可以往上下左右中的一个方向移动一格,但不能有任何一艘舰驶出地图。特别地,Byteasar 对阵形有所研究,所以他不希望在航行的过程中改变阵形,即任何时刻任何两艘舰的相对位置都不能发生变化。Byteasar 的舰队可以航行无限长的时间,每当一艘舰经过某个格子的时候,这个格子海底的矿藏都将被Byteasar 获得。请写一个程序,帮助Byteasar 计算他最多可以获得多少个格子海底的矿藏?

题解:

%jcp啊,一眼秒。beginend的博客写得挺好的,可以去看看。这题要注意一个小问题,普通的二维fft都是把(x,y)(x,y)转换成2m(x1)+y2m(x−1)+y的,但是这题可以不用乘2,因为那些会被误算的点的值都是0,不会影响最后的判断。

代码:

#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define pa pair<int,int>
const int Maxn=710;
const int inf=2147483647;
const double pi=acos(-1.0);
int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
    return x*f;
}
int n,m,mp[Maxn][Maxn];
char s[Maxn];
struct C
{
    double x,y;
    C(double _x=0,double _y=0){x=_x,y=_y;}
}a[Maxn*Maxn*4],b[Maxn*Maxn*4];
C operator + (C a,C b){return C(a.x+b.x,a.y+b.y);}
C operator - (C a,C b){return C(a.x-b.x,a.y-b.y);}
C operator * (C a,C b){return C(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
int bin[Maxn*Maxn*4];
void fft(C *a,int n,int op)
{
    for(int i=0;i<=n;i++)
    if(i<bin[i])swap(a[i],a[bin[i]]);
    for(int i=1;i<n;i<<=1)
    {
        C wn=C(cos(pi/i),sin(pi/i)*op);
        for(int j=0;j<n;j+=(i<<1))
        {
            C w=C(1,0);
            for(int k=0;k<i;k++)
            {
                C t=a[i+j+k]*w;w=w*wn;
                a[i+j+k]=a[j+k]-t;
                a[j+k]=a[j+k]+t;
            }
        }
    }
}
int P(int x,int y){return (x-1)*m+y;}
bool mark[Maxn][Maxn];
struct PP
{
    int x,y;
    PP(int _x=0,int _y=0){x=_x,y=_y;}
}List[Maxn*Maxn];int Len=0;
int dx[]={0,0,1,-1};
int dy[]={1,-1,0,0};
bool in(int x,int y)
{return (x&&y&&x<=n&&y<=m);}
void bfs(int x,int y)
{
    queue<PP>q;
    q.push(PP(x,y));
    List[++Len]=PP(x,y);
    mark[x][y]=false;
    while(!q.empty())
    {
        PP t=q.front();q.pop();
        for(int i=0;i<4;i++)
        {
            int nx=t.x+dx[i],ny=t.y+dy[i];
            if(in(nx,ny)&&mark[nx][ny])
            {
                List[++Len]=PP(nx,ny);
                q.push(PP(nx,ny));
                mark[nx][ny]=false;
            }
        }
    }
}
int main()
{
    int cnt=0;
    n=read(),m=read();
    int mxx=-1,mxy=-1,mnx=inf,mny=inf;
    for(int i=1;i<=n;i++)
    {
        scanf("%s",s+1);
        for(int j=1;j<=m;j++)
        {
            if(s[j]=='.')mp[i][j]=0;
            else if(s[j]=='#')mp[i][j]=1;
            else if(s[j]=='o')
            {
                mp[i][j]=2,cnt++;
                mnx=min(mnx,i),mny=min(mny,j),mxx=max(mxx,i),mxy=max(mxy,j);
            }
        }
    }
    for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
    {
        if(mp[i][j]==2)a[n*m-P(i-mnx+1,j-mny+1)+1].x=1;
        else if(mp[i][j]==1)b[P(i,j)].x=1;
    }
    int mx=n*m*2,t=1;
    while(t<=mx)t<<=1;
    bin[0]=0;
    for(int i=1;i<=t;i++)bin[i]=((bin[i>>1]>>1)|((t>>1)*(i&1)));
    fft(a,t,1),fft(b,t,1);
    for(int i=0;i<=t;i++)a[i]=a[i]*b[i];
    fft(a,t,-1);
    for(int i=1;i<=n-(mxx-mnx);i++)
    for(int j=1;j<=m-(mxy-mny);j++)
    if((int)(a[n*m+P(i,j)].x/(double)t+0.5)==0)mark[i][j]=true;
    bfs(mnx,mny);
    memset(a,0,sizeof(a));
    memset(b,0,sizeof(b));
    for(int i=1;i<=Len;i++)
    a[P(List[i].x,List[i].y)].x=1;
    for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
    if(mp[i][j]==2)b[P(i-mnx+1,j-mny+1)-1].x=1;
    mx=n*m*2,t=1;
    while(t<=mx)t<<=1;
    bin[0]=0;
    for(int i=1;i<=t;i++)bin[i]=((bin[i>>1]>>1)|((t>>1)*(i&1)));
    fft(a,t,1),fft(b,t,1);
    for(int i=0;i<=t;i++)a[i]=a[i]*b[i];
    fft(a,t,-1);
    int ans=0;
    for(int i=0;i<=t;i++)
    {
        int tmp=(int)(a[i].x/(double)t+0.5);
        if(tmp)ans++;
    }
    printf("%d",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值