被FFT的空间卡了半天 后来发现根本不用开那么大…
首先可以把包含舰艇的那个小矩形找出来 将它一行一行连接成一个串T 其中舰艇位置为1其他位置为0 将大矩形也连成串S 其中礁石为1其他为0
两个串匹配起来如果某一位两个串是1和1 则礁石与舰艇会在同一位置不可能到达 那么这个匹配所对应的图中的位置就不成立
因为要确定每个位置可以想到将T翻转后做FFT后每一位(每一位代表了一个小矩形的匹配情况)上结果是0就可以匹配上 为1不成立 选出为0的 做一遍BFS 求出可以到达的位置
可以发现可行的状态里面会有重复的空地 所以再做一次FFT T串为小矩形的正序串 S串为BFS后的可行装状态串 之后对结果的数组中实数个数计数就是答案咧
#include<bits/stdc++.h>
#define bug(x) cout<<(#x)<<" "<<(x)<<endl
#define ll long long
#define mod 1000000007
#define inf 2e9
#define PI acos(-1.0)
#define pii pair<int,int>
#define fi first
#define se second
#define mk make_pair
using namespace std;
const int N=1e6+5
const int MXN=7e2+5;
struct cp {
double x,y;
cp(double _x=0,double _y=0) { x=_x,y=_y;}
}A[N],B[N];
cp operator + (cp x,cp y){cp z;z.x=x.x+y.x;z.y=x.y+y.y;return z;}
cp operator - (cp x,cp y){cp z;z.x=x.x-y.x;z.y=x.y-y.y;return z;}
cp operator * (cp x,cp y){cp z;z.x=x.x*y.x-x.y*y.y;z.y=x.y*y.x+x.x*y.y;return z;}
int ans,up=inf,dn,lf=inf,rt,W,H,all,k,len,M,n,m,r[N],T[N];
queue<pii >q;
char a[MXN][MXN];
bool vis[N],v[N];
void init(){
for(int i=0;i<n;i++) for(int j=0;j<m;j++){
if(a[i][j]=='#') B[i*m+j]=cp(1,0);
else if(a[i][j]=='o'){
up=min(up,i),dn=max(dn,i);
lf=min(lf,j),rt=max(rt,j);
}
}
for(int i=up;i<=dn;i++) for(int j=lf;j<=rt;j++) if(a[i][j]=='o')T[(i-up)*m+j-lf]=1;
W=rt-lf+1,H=dn-up+1,len=(H-1)*m+W;
}
void FFT(cp *x,int f){
for(int i=0;i<M;i++) if(r[i]>i) swap(x[r[i]],x[i]);
for(int i=1;i<M;i<<=1){
cp wn(cos(PI/i),f*sin(PI/i));
for(int j=0;j<M;j+=i<<1){
cp w=1;
for(int k=0;k<i;k++,w=w*wn){
cp a=x[j+k],b=w*x[j+k+i];
x[j+k]=a+b,x[j+k+i]=a-b;
}
}
}
if(f==-1) for(int i=0;i<M;i++) x[i].x/=M;
}
void work(){
q.push(mk(dn,rt));
while(!q.empty()){
int x=q.front().fi,y=q.front().se;q.pop();
if(x<0||x>=n||y<0||y>=m) continue;
int z=x*m+y;
if(!v[z]||vis[z]) continue;
vis[z]=1;
q.push(mk(x+1,y)),q.push(mk(x-1,y)),q.push(mk(x,y-1)),q.push(mk(x,y+1));
}
}
int main(){
#ifdef Devil_Gary
freopen("in.txt","r",stdin);
#endif
/* freopen("sailing.in","r",stdin);
freopen("sailing.out","w",stdout);*/
cin>>n>>m,all=n*m;
for(int i=0;i<n;i++) scanf("%s",a[i]);
init();
for(M=1;M<=all;M<<=1,k++);
for(int i=1;i<M;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(k-1));
for(int i=0;i<len;i++) if(T[i]) A[len-i-1]=1;
FFT(A,1),FFT(B,1);
for(int i=0;i<M;i++) A[i]=A[i]*B[i];
FFT(A,-1);
for(int i=H-1;i<n;i++) for(int j=W-1;j<m;j++)
if(A[i*m+j].x<0.5) v[i*m+j]=1;
work();
for(int i=0;i<M;i++) A[i]=T[i];
for(int i=0;i<M;i++) B[i]=vis[i];
FFT(A,1),FFT(B,1);
for(int i=0;i<M;i++) A[i]=A[i]*B[i];
FFT(A,-1);
for(int i=0;i<M;i++) if(A[i].x>0.5) ans++;
return printf("%d\n",ans),0;
}