描述
给定一个整数 M,对于任意一个整数集合 S,定义“校验值”如下:
从集合 S 中取出 M 对数(即 2∗M 个数,不能重复使用集合中的数,如果 S 中的整 数不够 M 对,则取到不能取为止),使得“每对数的差的平方”之和最大,这个最大值 就称为集合 S 的“校验值”。
现在给定一个长度为 N 的数列 A 以及一个整数 T。我们要把 A 分成若干段,使得 每一段的“校验值”都不超过 T。求最少需要分成几段。
题解:
这个倍增的方法好像很厉害啊。
配对的方法一定是令最大最小、次大次小这样配对,证明可以自己写一写式子。然后我们就要尽量让每一段最长。初始化L=R=1,p=1,然后每次看[L,R+p]这一段是否符合,若符合,则R+=p,p*=2,否则p/=2,p为0时的R即为答案。每次只用把新增的一段排序,然后再与原来的归并合并,复杂度可以达到O(nlogn)O(nlogn)。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define LL long long
const int Maxn=500010;
int n,m;LL k,a[Maxn],b[Maxn],c[Maxn],t[Maxn];int lt;
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%lld",&n,&m,&k);
for(int i=1;i<=n;i++)scanf("%lld",&a[i]);
int p=1,l=1,r=1,ans=0,lb;
while(1)
{
if(l==n+1)break;
b[lb=1]=a[l];
int R;
while(p)
{
R=min(r+p,n);
lt=0;
for(int i=r+1;i<=R;i++)t[++lt]=a[i];
sort(t+1,t+1+lt);
int l2=1,l1=0;
for(int i=1;i<=lb;i++)
{
while(l2<=lt&&t[l2]<=b[i])c[++l1]=t[l2++];
c[++l1]=b[i];
}
while(l2<=lt)c[++l1]=t[l2++];
LL s=0;
bool flag=true;int cnt=0;
for(int i=1;i<=l1/2;i++)
{
cnt++;
s+=(c[l1-i+1]-c[i])*(c[l1-i+1]-c[i]);
if(s>k){flag=false;break;}
if(cnt==m)break;
}
if(flag)
{
if(r+p>=n){r=n;break;}
r=R,R+=p,p<<=1;
lb=l1;
for(int i=1;i<=lb;i++)b[i]=c[i];
}
else p>>=1;
}
ans++;
l=++r;p=1;
}
printf("%d\n",ans);
}
}