【ACWing】109. 天才ACM(配数学证明)

题目地址:

https://www.acwing.com/problem/content/111/

给定一个整数 M M M,对于任意一个整数集合 S S S,定义“校验值”如下:从集合 S S S中取出 M M M对数(即 2 × M 2×M 2×M个数,不能重复使用集合中的数,如果 S S S中的整数不够 M M M对,则取到不能取为止),使得“每对数的差的平方”之和最大,这个最大值就称为集合 S S S的“校验值”。现在给定一个长度为 N N N的数列 A A A以及一个整数 T T T。我们要把 A A A分成若干段,使得每一段的“校验值”都不超过 T T T。求最少需要分成几段。

输入格式:
第一行输入整数 K K K,代表有 K K K组测试数据。
对于每组测试数据,第一行包含三个整数 N , M , T N,M,T N,M,T
第二行包含 N N N个整数,表示数列 A 1 , A 2 … A N A_1,A_2…A_N A1,A2AN

输出格式:
对于每组测试数据,输出其答案,每个答案占一行。

数据范围:
1 ≤ K ≤ 12 1≤K≤12 1K12
1 ≤ N , M ≤ 500000 1≤N,M≤500000 1N,M500000
0 ≤ T ≤ 1 0 18 0≤T≤10^{18} 0T1018
0 ≤ A i ≤ 2 20 0≤A_i≤2^{20} 0Ai220

先证明一个定理,设 a 1 ≤ a 2 ≤ . . . ≤ a n a_1\le a_2\le ...\le a_n a1a2...an n n n是偶数,设 f n ( a 1 , . . . , a n ) f_n(a_1,...,a_n) fn(a1,...,an)是某种配对方式下的差的平方和,我们证明当配对方式是 ( a 1 , a n ) , ( a 2 , a n − 1 ) , . . . (a_1,a_n),(a_2,a_{n-1}),... (a1,an),(a2,an1),...的情况下 f n f_n fn取到最大。

反证法:当 n = 2 n=2 n=2的时候可以暴力验证,结论正确。对于 n n n个数的情况,定理中要求 a 1 a_1 a1 a n a_n an配对,如果不是如此,设 a 1 < a i < a j < a n a_1<a_i<a_j<a_n a1<ai<aj<an,而 a 1 a_1 a1不和 a n a_n an配对,要么 ( a 1 , a i ) , ( a j , a n ) (a_1,a_i),(a_j,a_n) (a1,ai),(aj,an),要么 ( a 1 , a j ) , ( a i , a n ) (a_1,a_j),(a_i,a_n) (a1,aj),(ai,an),无论怎样,都可以暴力验证将这四个数按照定理中的配对方式能得到更大的和,这就矛盾了。

接下来考虑求解原题。我们用倍增的方式来求解从 l l l开始的最长的一段,使得那一段的校验值小于等于 T T T,截取出这样的一段之后,再在剩余的数里继续进行这个操作(由于如果集合 A A A真包含于集合 B B B,那么 A A A的校验值一定不超过 B B B的校验值,所以每次取的时候要尽可能的多取数,那样更优)。

具体的倍增的方法是,对于左端点 l l l,我们先设右端点 r = l r=l r=l,设 p = 1 p=1 p=1,代表步长。接着看 [ l , r + p ] [l,r+p] [l,r+p]这一段的校验值是否满足条件,如果满足,则延伸右端点并倍增步长,令 r r r等于 r + p r+p r+p,令 p p p为两倍;如果不满足,则将 p p p减半。如果 p = 1 p=1 p=1的时候仍然不满足,则 p p p减半后会变成 0 0 0,此时退出循环, r r r即为本次取到的最右的右端点。

在判断校验值是否满足条件的时候,需要对区间排序。然而我们每次是新加了一些数,前面已经加的数已经排好序了,从而用归并排序更加节省时间。具体看代码,代码如下:

#include <algorithm>
#include <cmath>
#include <iostream>
using namespace std;
using ll = long long;

const int N = 5e5 + 10;
int k;
int n, m;
ll t;
int a[N], b[N], tmp[N];

// 每次进check的时候,b[l:mid-1]都已经与a[l:mid-1]的数字相同,且排好序了
bool check(int l, int mid, int r) {
  for (int i = mid; i <= r; i++) b[i] = a[i];
  // 只排序后半部分,并用归并的方式将[l:r]的最终排序结果放入tmp中
  sort(b + mid, b + r + 1);
  int k = l, i = l, j = mid;
  while (i < mid && j <= r)
    if (b[i] <= b[j])
      tmp[k++] = b[i++];
    else
      tmp[k++] = b[j++];
  while (i < mid) tmp[k++] = b[i++];
  while (j <= r) tmp[k++] = b[j++];

  // 验证一下校验码
  ll sum = 0;
  for (int i = l, j = r; i < j && i < l + m; i++, j--) {
    ll diff = tmp[i] - tmp[j];
    sum += diff * diff;
    if (sum > t) return false;
  }
  // 如果本轮校验码符合要求,那么后面只会新加数进来,
  // 当前[l:r]的数不会变了,从而可以将排序结果填入b中
  for (int i = l; i <= r; i++) b[i] = tmp[i];
  return true;
}

int work() {
  int res = 0;
  int l = 1;
  b[l] = a[l];
  while (l <= n) {
    int p = 1, r = l;
    while (p) {
      // b[l:r]排好序
      if (r + p <= n && check(l, r + 1, r + p))
        r += p, p <<= 1;
      else
        p >>= 1;
    }

    l = r + 1;
    res++;
  }

  return res;
}

int main() {
  scanf("%d", &k);
  while (k--) {
    scanf("%d%d%lld", &n, &m, &t);
    for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
    printf("%d\n", work());
  }
}

时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn),空间 O ( n ) O(n) O(n)

  • 17
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值