[BZOJ]2728: [HNOI2012]与非 思维

Solution

这题还是不错的。
首先可以观察到的是,这个与非的功能还是十分强大的,他可以实现按位取反 x   N A N D   x x\ NAND\ x x NAND x,下面按位取反的符号设为 ! ! !,或 ( ! x ) N A N D ( ! y ) (!x)NAND(!y) (!x)NAND(!y),与 ! ( x   N A N D   y ) !(x\ NAND\ y) !(x NAND y),异或 ( x ∣ y ) & ( x   N A N D   y ) (x|y)\&(x\ NAND\ y) (xy)&(x NAND y),这些基本的位运算。
然后要求 [ L , R ] [L,R] [L,R]范围内多少数能表示出来,考虑构造一个类似线性基的东西。
从高到低考虑每一位,怎么搞出这一位的线性基,使得位与位之间尽量互不影响。对于每个数,如果这一位不是 1 1 1,就按位取反,然后把 n n n个数再与起来,这样首先可以保证这一位是 1 1 1,然后若其它位至少有一位不同就是 0 0 0,这样就得到了每一位的线性基。
最后再像数位DP那样,一位一位确定计算方案即可。

Code

#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define pa pair<int,int>
const int Maxn=1010;
const int inf=2147483647;
LL read()
{
    LL x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
    return x*f;
}
int n,k,c[62],tot=0;LL L,R,a[Maxn],b[62],o;
LL query(LL x)
{
    if(x<0)return -1;
    LL re=0,y=0;
    for(int i=1;i<=tot;i++)
    if((y|b[i])<=x)re+=(1LL<<(tot-i)),y|=b[i];
    return re;
}
int main()
{
    n=read(),k=read(),L=read(),R=read();
    o=(1LL<<k)-1;
    for(int i=1;i<=n;i++)a[i]=read();
    for(int i=k-1;i>=0;i--)
    if(!c[i])
    {
        b[++tot]=o;
        for(int j=1;j<=n;j++)
        if((1LL<<i)&a[j])b[tot]&=a[j];
        else b[tot]&=((~a[j])&o);
        for(int j=i;j>=0;j--)
        if((1LL<<j)&b[tot])c[j]=tot;
    }
    printf("%lld",query(R)-query(L-1));
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值