Optimization-based neutrosophic set for medical image processing

Optimization-based neutrosophic set for medical image processing

论文翻译:基于优化的中智集用于医学图像处理

1引言

在现代医学中,由于数字医学成像技术的进步,大多数临床医生会根据医学图像传递的有用信息进行诊断并为多种医学状况提供治疗。 医疗状况,包括脑部和脊髓异常; 心脏,肝脏,胰腺和其他腹部器官疾病; 骨关节受伤或异常; 身体各部位的异常和异常可以使用医学图像进行可视化。 这些可能是通常不可见的特征,例如肿瘤和病变。 形状变化,即特定结构的收缩和扩大; 与正常组织相比,图像内图像强度的变化。 流行的医学成像模式是X射线成像,计算机断层扫描(CT),超声成像,MRI,显微成像,光学相干层析成像,皮肤镜成像和分子成像。
脑瘤是无法控制地生长的异常组织。良性肿瘤边缘清晰,而恶性肿瘤边界不规则,则侵入正常组织。转移到大脑的肿瘤每年影响近15万人。例如,肺癌患者会发展成转移性脑瘤的机会是40%。用于肿瘤早期检测的更先进的诊断系统以及创新的手术和放射治疗方法有助于改善脑肿瘤患者的生活质量。 MRI是用于放射学诊断脑肿瘤的最佳医学成像技术,因为它可以使大脑结构可视化并检测具有不同对比度特性的大脑异常。
为了检测脑部MR图像中的肿瘤,使用图像分割。通常,分割是通过三种方法完成的:手动,半自动和自动。在手动肿瘤分割中,放射科医生通过遍历多张MR图像并通过实践和经验获得其生理和解剖学知识来手动执行肿瘤区域提取,这是一个耗时的过程。在全自动方法中,计算机通过分割医学图像来确定脑部肿瘤,而无需专家的互动。这种方法需要具有先验知识的人工智能和机器学习技术。在临床环境中对优化医学图像分析算法的利用有助于在分析中提供更高的准确性。医学图像处理的优化旨在根据某些标准找到“最佳”解决方案。此外,考虑了一种功能强大的优化方法,可以根据速度和最佳收敛性来分析医学图像。为了实现更准确和最佳的诊断,医学图像处理和分析(例如图像分割,分类,配准和融合)通过使用生物启发的优化程序来提高性能。
基于优化的中智集方法在医学图像处理中用于增强性能指标。在基于NS的医学图像处理方法中,可以将优化应用于医学图像处理算法或NS操作中。在第一种情况下,简单的NS操作用于医学图像增强,优化的图像处理技术有助于获得准确的结果。在乳腺癌中,Syed和Hassanein(2017)提出了一种使用NS和蛾-火焰优化的优化检测方法。组织病理学幻灯片图像使用高斯滤镜增强。为了专注于检测有丝分裂细胞,对真正的子集图像执行了形态学操作,这些图像是通过将增强图像映射到NS域获得的。 MFO算法用于通过最大化f分数从总共345个特征中最佳区分有丝分裂细胞的特征子集选择。为了对有丝分裂和非有丝分裂细胞进行分类,将此选定的特征子集输入分类和回归树(CART)。将基于MFO的特征选择算法的健壮性与其他元启发式算法进行比较,例如鸡群优化器(CSO),灰太狼优化(GWO)和蚁群(ABC)特征选择算法。根据获得的结果,MFO通过选择最少数量的特征以及快速收敛,可以提供良好的分类性能。对于自动肝肿瘤分割,Anter和Hassenian(2018)整合了NS,快速FCM和PSO。结果证明了所采用方法的优越性和鲁棒性,并且具有快速准确的收敛性。
在第二种情况下,在NS操作中使用了优化,以减少不确定性,从而提高医学图像分割的性能。 Ashour,Hawas,Guo和Wahba(2018)使用GA优化的NS和k均值聚类从皮肤镜检查图像中开发了皮肤病变检测方法。通过这种方法,可以通过使用GA优化(其中适应度函数是Jaccard索引最大化)来优化NS域的α均值运算的α值。通过使用该最佳α值将皮肤镜图像映射到NS空间,并使用k-均值聚类对NS域中的皮肤病变图像进行分割。实验结果表明,该方法具有较高的平均精度。在本章中,优化技术用于指导图像分割算法,而NS用于提高图像质量。在这里,通过使用非局部均值运算增强MR图像并映射到NS域,然后通过改进的PSO引导的模糊c均值(FCM)方法进行分割,可以从MR图像自动进行脑肿瘤分割。以下各节的组织如下:第2节详细介绍了自动脑肿瘤分割方法中使用的方法。第三部分演示了结果,包括与原始FCM和NS-FCM相比,NS步骤的可视化以及优化的肿瘤分割和定位以及评估指标。最后,第4节包括结论和建议的未来工作。

2方法论

通过使用非局部均值运算通过定义NS的熵来量化不确定性,在将MR图像增强后,将NS应用于MR图像域。 然后,将FCM与改进的PSO算法一起用于从MR图像中分割脑肿瘤。

2.1非局部均值

为了增强脑肿瘤MR图像,对MR图像执行了非局部均值(NLM)操作。 在非局部均值下,离散噪声图像为u = {u(a)|a∈I},像素a的估计值为NL [u](a),通过取图像中所有像素的加权平均值来计算
在这里插入图片描述
其中权重{w(a,b)}b的值取决于像素a和b之间的相似度,并且满足通常条件0<=w(a,b)<=1和sum(w(a,b)b)= 1。
两个像素a和b之间的相似度取决于强度灰度级向量u(Na)和u(Nb)的相似度,其中Na和Nb表示固定大小的正方形邻域,分别以像素a和b为中心。 将该相似性作为加权欧几里德距离的递减函数|| u(Na)-u(Nb)||2,2σ进行测量,其中σ> 0是高斯核的标准偏差。使用到噪声邻域的欧氏距离导致以下等式:
在这里插入图片描述
这些相等条件说明了算法的鲁棒性,其中欧氏距离可以按预期保留像素之间相似度的顺序。 灰度级与u(Na)相似的像素的平均权重较大。 这些权重由下式给出:
在这里插入图片描述
其中Z(a)是使用以下表达式的归一化常数:
在这里插入图片描述
其中参数h充当过滤度,以控制指数函数的衰减,从而导致权重随欧几里得距离而衰减。 使用NLM过滤器时,三个关键参数是搜索窗口的大小(w),邻域窗口的大小(f)和过滤程度(h)。 通过分别将参数w和f选择为6和3来增强MR图像,并且h被认为与图像的强度值成比例。

2.2中智形象

中智集用于描述任何信息中的不确定性和不确定性。 在NS中,每个事件都是通过使用三个分量(例如,真(T),不确定(I)和假(F)子集)定义的(Smarandache,2003年)。 将非局部平均增强MR图像映射到中智图像HNS,该图像由三个成员集T,I,F描述。
图像中的像素H被描述为H(T,I,F),其中t,i和f分别是集合中的true,不确定和false,t在T中变化,f在F中变化,i在I中变化。 之后,图像空间中的像素H(a,b)被变换为NS空间HNS(a,b)= {T(a,b),I(a,b),F(a,b)}。 T(a,b),I(a,b)和F(a,b)是相应的概率,由下式给出:
在这里插入图片描述
其中g为原图像,g ̅表示均值滤波后图像,w表示方形均值滤波窗口长度,δ表示计算原图像与均值图像各位置像素强度之差的绝对值形成的图像。g(i,j),g ̅(i,j),δ(i,j)为各图像中(i,j)位置的像素值。g ̅_max,g ̅_min分别表示图像g ̅中的最大,最小像素强度,δ_max,δ_min分别表示图像δ中的最大,最小像素强度。
对于灰度图像,计算熵以评估灰度分布。当强度具有均匀分布的相等概率时,就会出现最大熵。 较小的熵发生于具有不均匀分布的不同概率的强度。 中智图像中的熵被视为T,I和F熵的总和,用于测量NS域中元素的分布,表示为:
在这里插入图片描述
其中T,I和F的熵分别为EnT,EnI和EnF。 此外,元素k在T,I和F中的概率分别为pT(k),pI(k)和pF(k)。 I(a,b)值用于计算元素HNS(a,b)的不确定性。

2.3模糊c均值聚类算法

Dunn(1973)开发了FCM算法,后来Bezdek,Coray,Gunderson和Watson(1981)对此算法进行了改进,将每个数据点分配给一个群集。 FCM是一种无监督学习,可用于聚类,特征选择,图像分割和分类器设计。 FCM中的数据点可以属于一个以上具有不同隶属度的群集(Fukunaga,2013年)。 模糊化参数(m)用于确定群集中的模糊度。 FCM算法以其迭代方式工作,其中最小化了以下目标函数J:
在这里插入图片描述
其中X是N个数据元素的集合,C是所需的簇数,cj是簇的中心向量,1<=m<=∞是模糊器,δij∈[0,1]是聚类j中第i个数据点xi的模糊隶属度。|| xi-cj || 测量数据点xi与簇j的中心向量cj的接近度。 重心和隶属度函数可以简化如下:
在这里插入图片描述

2.4改进的粒子群算法

Kennedy和Eberhart(1995)将PSO托管为一种元启发式优化程序,以寻找全局最佳解决方案。与遗传算法(GA)一样,算法的状态由总体表示,并且对其进行迭代修改,直到满足终止条件为止。在PSO中,通过保持相同的种群来迭代更新种群成员(即粒子)的位置,而在GA中,一代又一代的种群发生了变化,并使用交叉和突变操作传递了遗传信息。下一代的最佳解决方案。 PSO维护大量的粒子以找到所考虑的优化问题的解决方案。为了解决M变量优化问题,每个粒子在搜索空间中都拥有一个M维点。每个粒子的适应度或质量均使用适应度函数进行测量。每个粒子的位置,速度和适合度值由适合度函数确定。对于每次迭代,每个粒子都有自己的位置和速度,飞过搜索空间以获得最佳解。这些参数是根据它们自己先前的迭代速度,距其个人最佳位置的距离以及距群中最佳粒子的位置的距离来更新的。
PSO的优化过程由每个粒子的位置和速度的随机值初始化,并且还初始化每个粒子的最佳位置和群集中粒子的最佳位置。通过使用这些值,可以确定每个粒子的适合度值。根据适应度值,更新每个粒子的最佳位置和粒子在群集中的最佳位置,以及每个粒子的速度和位置。对每个粒子迭代执行这些步骤,以找到优质的溶液,直到建立最佳溶液。考虑,在M维空间中,粒子a的位置为Xa=(xa1,xa2,…,xaM),速度为Va=(va1,va2,…,vaM)。在迭代过程中,粒子a的当前个人最佳位置为PBa =(PBa1,PBa2,…,PBaM),而当前总体全局最佳位置为GB =(GB1,GB2,…,GBM)。通过考虑惯性效应以及个人和社会影响来更新粒子a的速度,其计算如下:
在这里插入图片描述
粒子的位置计算如下:
在这里插入图片描述
其中ω是PSO的惯性权重,它代表当前速度对新速度的继承,范围为0 <ω<1; t是迭代次数。 参数c1和c2是PSO的学习因素,可以帮助将每个粒子移向其个人最佳和全球最佳位置。 两者都是常数,其值在0到4之间。参数r1和r2是0到1之间的均匀分布的随机数。
在改进的粒子群优化算法中,为了提高粒子群优化算法的收敛性并通过使用线性递减的方式提高优化质量,已经对惯性权重ω进行了迭代计算。 与迭代执行的PSO算法一起,其用于计算速度的惯性权重ω也将线性降低,如公式3所示。 (19)
在这里插入图片描述
其中,tmax是最大迭代次数,ωmax和ωmin分别是惯性权重的最大值和最小值。

2.5提出的程序

首先,使用非局部均值运算来增强MR图像,并通过定义NS的熵来量化不确定性,将生成的图像映射到NS空间。 然后,改进的PSO算法指导FCM自动从MR图像中分割脑肿瘤。 整个过程可以总结如下:
在这里插入图片描述
算法1
在MR图像上应用NLM操作(如第2.1节所述)将增强的MR图像转换为NS域(如第2.2节所述)
改进的PSO-FCM聚类方法用于脑肿瘤分割
-初始化c1,c2,M,tmax
-初始化编号 集群c
-随机初始化粒子X的位置
(M尺寸)
-初始化粒子速度V,每个粒子的成本为无穷大。
-初始化每个粒子的局部最佳位置PB和全局最佳位置GB及其成本值
-对于每次迭代t直到tmax主循环
-计算惯性重量w
-对于每个粒子m
-更新速度
-更新位置
-计算目标函数Jm

  • 结束
    -如果Jm [t + 1] <Jm最佳更新粒子最佳成本值和位置
    -如果Jm [t + 1] <J最佳更新全球最佳成本值和排名
  • 结束
    在这里插入图片描述
3 结果与讨论
3.1 实验结果

公共脑肿瘤数据集(Cheng,2017)用于对所提出系统的性能进行评估。为了获得最佳性能,在建议的分割算法中采用了改进的PSO来优化参数。修改后的PSO的配置在表1中列出。为了显示修改后的PSO优化的收敛性,使用了四个带有各种肿瘤的MRI脑图像,其收敛性绘制在图1中。从图中可以清楚地看到,优化过程可以在少于100次迭代中收敛。图2和图3分别说明了来自数据集的MR图像(Hirschmann等,2012)所提出的方法的各个步骤,图像编号分别为64和96。图2A是原始MR图像编号64,图3A是原始MR图像编号96。图2B和3B是非局部平均增强MR图像。 NS域中的MR图像(例如,真实子集,错误子集,不确定子集和增强的NS图像)分别在图2C–F和3C–F中给出。使用提出的NS修饰的PSO FCM方法的脑肿瘤分割图像显示在图2G和3G中。在图2H和3H中描绘了最终的脑肿瘤追踪的MR图像。从结果可以看出,由于NS和优化算法的结合,可以精确地分割脑肿瘤。

3.2 评估结果

图像的分割通过使用几个度量标准来评估,包括敏感性,特异性,Jaccard相似性度量标准和骰子系数。
令U为图像中所有体素的集合,即被地面标记为肿瘤的体素的集合,定义为T∈U。 同样,S∈U是使用所提出的方法标记为肿瘤的体素集。 T和S共有的体素集称为真实正集,其定义为TP = T∩S。 在两组中都标记为非肿瘤的体素组称为真阴性,定义为TN = T ̅ ∩S ̅ 。 假阳性集是标记为肿瘤体素的非肿瘤体素的集合,其定义为FP = T ̅ ∩S。 假阴性集定义为FN = T∩S ̅ ,其中肿瘤体素标记为非肿瘤体素。 然后,使用以下集合计算成功率和错误率,如下所示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
另外,分别给出了Jaccard相似度和Dice系数度量,如下所示:
在这里插入图片描述
为了测试所提出的过程性能,随机选择了100张MRI图像,并计算了四个指标(敏感性,特异性,Jaccard和骰子),并与其他两种方法(如FCM和带有FCM的NS)进行了比较。 平均结果列于表2,并在图4中进行比较。
比较结果表明,与其他方法相比,该方法具有四个测量指标的最佳值的优越性。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值