DUKE大学BOE数据集 OCT图像积液分割数据集

使用此数据集用来做积液分割研究

地址:http://people.duke.edu/~sf59/Chiu_BOE_2014_dataset.htm
图片来源:https://joi.usst.edu.cn/html/2021/3/20210305.htm

使用python将.mat转换为图片格式

#对BOE .MAT格式文件处理成图片
import cv2
import scipy.io as scio
import os

# [0,1]=>[0,255]
def changeImg(gray):
    H, W = gray.shape
    for i in range(0, W):
        for j in range(0, H):
            if gray[j, i] != 0:
                gray[j, i] = 255
    return gray

folder = 'BOE/2015_BOE_Chiu'
path = os.listdir(folder)
srcdst = 'BOE/img/srcimg/'
m1dst = 'BOE/img/m1img/'
m2dst = 'BOE/img/m2img/'

for each_mat in path:
    print(each_mat)
    first_name, second_name = os.path.splitext(each_mat)
    print('mat名',first_name,first_name[-2:])
    # 拆分.mat文件的前后缀名字,注意是**路径**
    # break
    each_mat = os.path.join(folder, each_mat)
    array_struct = scio.loadmat(each_mat)

    img_data = array_struct['images'] # 原图像
    src_count = img_data.shape[2] #图像个数
    # print(img_data[0][0],img_data[1],img_data[2])
    for i in range(src_count):
        cv2.imwrite(srcdst + first_name[-2:] + '/img' + first_name[-2:] +'index'+str(i)+ '.jpg', img_data[:, :, i])

    manual1_data = array_struct['manualFluid1']  # 标注1
    m1_count = manual1_data.shape[2] #图像个数
    for i in range(m1_count):
        manual1_img = changeImg(manual1_data[:, :, i])
        cv2.imwrite(m1dst + first_name[-2:] + '/img' + first_name[-2:] + 'index' + str(i) + '.jpg', manual1_img)

    manual2_data = array_struct['manualFluid2']  # 标注2
    m2_count = manual2_data.shape[2] #图像个数
    for i in range(m2_count):
        manual2_img = changeImg(manual2_data[:, :, i])
        cv2.imwrite(m2dst + first_name[-2:] + '/img' + first_name[-2:] + 'index' + str(i) + '.jpg', manual2_img)
    # break

更新

2022-6-2
鉴于大家由于代码执行失败造成分割不成功的情况,留言给我要数据集。
我把数据集上传了,在这个链接https://download.csdn.net/download/baidu_37336262/85524491,积分设置5积分,没有积分下载的再留言找我要吧,看到就回。

PS:同学们点点关注,点点赞,我的博客收藏比关注多,emo…

评论 75
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值