Level Set Evolution Without Re-initialization: A New Variational Formulation

Level Set Evolution Without Re-initialization: A New Variational Formulation
无重新初始化的水平集演化:新的变分公式
2.背景
2.1 传统的水平集方法

在活动轮廓的水平集公式中,用C来表示活动轮廓,水平集方程φ(t, x, y)用来表示零水平集C(t) = {(x, y)| φ(t, x, y) = 0}。水平集函数φ的演化方程可以用以下一般形式表示:
在这里插入图片描述
这被称为水平集方程[11]。 函数F称为速度函数。 对于图像分割,函数F取决于图像数据和水平集函数φ。
在传统的水平集方法中[5-7,17],水平集函数φ在演化过程中会产生冲击,非常尖锐和/或平坦的形状,这使得进一步的计算非常不准确。 为了避免这些问题,一种常见的数值方案是在演化之前将函数φ初始化为有符号的距离函数,然后在进化过程中定期将函数φ“重塑”(或“重新初始化”)为有符号的距离函数。 确实,重新初始化过程至关重要,并且在使用传统水平集方法中无法避免[4-7]。

2.2 重新初始化的缺点

在传统的水平集方法中,重新初始化已被广泛用作数值补救方法[5-7]。标准的重新初始化方法是解以下重新初始化方程式
在这里插入图片描述
其中φ0是要重新初始化的函数,而sign(φ)是符号函数。 关于重新初始化方法已有大量文献[15,16],其中大多数是上述基于PDE的方法的变体。 不幸的是,如果φ0不平滑或φ0在界面的一侧比另一侧陡峭,则所产生的函数φ的零水平集可能会从原始函数的零水平集中错误地移动[4、15、17]。 此外,当零水平集方程远离带符号的距离函数时,这些方法可能无法将水平集方程重新初始化为带符号的距离函数。 实际上,在少数迭代步骤中,尤其是在时间步长选择不足够小的情况下,不断发展的水平集方程可能会大大偏离其有符号距离的值。

3.无需重新初始化的曲线演化的可变水平集公式
3.1 具有变分能量的一般变化水平集公式

如前所述,至关重要的一点是,在演化过程中,尤其是在零水平集附近,保持进化水平集合函数为近似有符号距离函数。 众所周知,有符号距离函数必须满足|Oφ|的理想属性。|Oφ| =1。相反,满足|Oφ|的任何函数φ = 1是有符号距离函数加常数[19]。 当然,我们提出以下积分
在这里插入图片描述
作为一个度量来表征函数φ与Ω⊂R2中的有符号距离函数有多接近。 该指标将在我们的变分水平集制定中发挥关键作用。 利用上面定义的函数P(φ),我们提出以下变式
在这里插入图片描述
其中,μ> 0是一个参数,用于控制对φ与有符号距离函数的偏差进行补偿的效果,εm(φ)是确定的能量,它将驱动φ的零水平曲线的运动。
在本文中,我们用∂ε/∂φ表示泛函ε的Gateaux导数(或一阶变数)[18],以及以下演化方程:
在这里插入图片描述
是使函数ε最小化的梯度流[18]。对于根据φ明确定义的特定函数ε(φ),可以根据函数φ及其导数[18]计算并表达Gateaux导数。
我们将专注于将(4)中的变分公式应用于活动轮廓进行图像分割,以便φ的零水平曲线可以演变为图像中所需的特征。 为此,将能量εm定义为依赖于图像数据的函数(请参见下文),因此我们将其称为外部能量。 因此,能量P(φ)被称为函数φ的内部能量,因为它仅是φ的函数。
在根据梯度流(5)使函数(4)最小化的过程中,零水平曲线将被外部能量εm移动。 同时,由于内部能量的惩罚作用,在演化过程中,根据演化(5),演化函数将自动保持为近似有符号距离函数。 因此,在提出的方法中完全消除了重新初始化过程。 接下来,将在活动轮廓中进一步说明该概念。

3.2 无需重新初始化的活动轮廓的变分水平集公式化

在图像分割中,活动轮廓是朝对象边界移动的动态曲线。 为了实现此目标,我们明确定义了一种外部能量,该能量可以将零水平曲线移向对象边界。 令I为图像,g为由以下项定义的边缘指示符函数:
在这里插入图片描述
其中Gσ是具有标准偏差σ的高斯核。 我们定义函数φ(x,y)的外部能量如下
在这里插入图片描述
其中λ> 0和ν是常数,而项Lg(φ)和Ag(φ)分别定义为
在这里插入图片描述
其中δ是单变量Dirac函数(冲激函数),H是Heaviside函数(阶跃函数)。 现在,我们定义以下总能量函数
在这里插入图片描述
外部能量Egλν驱使零水平集朝着物体边界移动,而内部能量µP(φ)则在演化过程中惩罚了φ与有符号距离函数的偏差。
为了更好的理解能量函数,我们假设零水平集φ表示为一个可微的参数化曲线C§,p∈[0,1]。我们已经知道[9]式(7)中能量函数在计算了零水平集曲线φ的零水平集曲线共形长度变化。另外式(8)中能量函数用来加速曲线演化。注意的是,当g函数的参数为1时,(8)中的能量函数为区域Ω-φ(曲线外区域)的面积[17]。可以将(8)中的能量函数Ag(φ)视为Ω-φ的加权区域。 Ag的系数ν可以为正也可以为负,具体取决于初始轮廓与感兴趣对象的相对位置。例如,如果初始轮廓放置在对象外部,则加权面积项中的系数ν应该取正值,以便轮廓可以更快地收缩。如果将初始轮廓放置在对象内部,则系数ν应该取负值,以加快轮廓的扩展速度。
通过微分计算[18],可以将式(9)中的E的Gateaux导数(一阶变式)写为
在这里插入图片描述
其中M是拉普拉斯算子。 因此,使该函数最小化的函数φ满足Euler-Lagrange方程∂E/∂φ=0。使函数E最小化的最陡下降过程是以下梯度流:
在这里插入图片描述
该梯度流是所提出方法中水平集函数的演化方程。
(10)右侧的第二项和第三项分别对应于能量函数λLg(φ)和νAg(φ)的梯度流,并负责将零能级曲线推向物体边界。 为了解释与内部能量µP(φ)相关的第一项的影响,我们注意到了梯度流
在这里插入图片描述

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值