Automated Segmentation of Intraretinal Cystoid Fluid in Optical Coherence Tomography
翻译:光学相干断层扫描中视网膜内囊样液的自动分割
摘要
囊性黄斑水肿(CME)在各种眼部疾病中均被观察到,并且与视力丧失密切相关。光学相干断层扫描(OCT)可提供出色的囊状液可视化效果,并可帮助临床医生监测CME的进展。评估CME的定量工具可能会为选择治疗方案提供更好的指标。为了满足这一需求,本文提出了一种用于从商业扫描仪获取的OCT图像堆栈的全自动视网膜囊肿分割技术。所提出的方法包括在保持CME边界的同时用于斑点去噪的计算快速双边滤波器。在来自16个玻璃体视网膜疾病患者和3个对照的图像中评估了提出的技术。发现CME患者的囊状区域分类的平均敏感性和特异性分别为91%和96%,并且通过该算法获得的囊状液占据的视网膜体积被发现在平均值和中位数体积分数内是准确的分别为1.9%和0.8%。
第一节引言
第二节方法
使用Cirrus HD-OCT Model 4000(Carl Zeiss Meditech)使用软件版本5.2获取OCT图像。从16例玻璃体视网膜疾病和视网膜内囊肿的证据以及3例无视网膜内囊肿的患者中获取了OCT图像。图像是在北卡罗来纳大学教堂山分校的北卡罗来纳大学基特纳眼科中心采集的,并被匿名以符合《健康保险可移植性和责任法案》的隐私标准。 OCT图像堆栈包含一个6mm×6mm×2mm的数据立方体,其体素大小分别为x×y×z 15μm×47μm×7.4μm。它们以405×270像素的x–z(B模式)帧进行存储和分析。我们分析了四个完整的数据集(一个CME和三个控件),这些数据集在y处扩展了128帧,并分析了15个部分数据集(所有CME),它们在y的黄斑中心扩展了8-20个帧。之所以使用这些部分堆栈,是因为手动评估算法的准确性非常耗时。由于视网膜内囊肿仅出现在整个组的不同子集中,因此小的子集使我们能够快速评估大量患者。
总的来说,我们的方法按顺序包括以下步骤:转换为灰度,视网膜层分割,中值滤波,信噪比(SNR)平衡,双边滤波,阈值,边界跟踪和FP拒绝。整个方法由MATLAB版本R2010a,MathWorks,Inc.编写。它是完全自动化的,并且可以作为一个功能运行,唯一的用户定义输入是直接从Cirrus OCT获得的图像堆栈文件。下面依次描述每个步骤。
A.颜色映射和视网膜层分割
最初,从Cirrus OCT系统获得的图像为24位彩色位图格式,并且包含用于神经纤维层(NFL)的白色分割线和用于视网膜色素上皮(RPE)层的黑色分割线。我们使用这些分割线分别定义分割囊样液的视网膜(视网膜ROI)的上限和下限。
首先,为了调整图像以进行分析,我们根据国家电视系统委员会的标准,使用MATLAB函数“ rgb2gray”将彩色位图映射为灰度图像。尽管此功能并非Cirrus OCT中使用的专有颜色映射的真正反函数,但它重要地保持了组织和囊状体液区域之间的相关对比度(见图1)。这一步骤允许人们在其他OCT成像设备上实施此算法,而无需专有软件。我们注意到与Zeiss签订了合同协议,可以直接获取从Cirrus获得的数据的灰度值和分割线的软件。接下来,我们利用Cirrus NFL和RPE线的厚度分别为两行(分别为255和0)来确定它们的位置。在最左边的列中从上到下的初始搜索用于标识每行的行位置,然后在紧邻的行中搜索每个相邻的列。但是,在NFL和RPE线不连续的情况下,该算法采用强度密度方法对NFL和RPE层进行插值,其中5×5像素窗口内的平均值由经验确定的> 35和<白色NFL曲线和黑色RPE曲线分别为22。记录每列中满足这些阈值条件的最高行,然后通过五阶多项式对每行进行插值。然后,将这些线的标识用于定义每个B模式图像中的视网膜ROI(见图2)。
图2。识别RPE和NFL分割线(以红色显示)后,图1中的OCT图像分别定义了视网膜ROI的上下边界。
B.中值滤波和信噪比平衡
为了抑制散粒噪声,我们然后在x×z中对3×3像素使用了中值滤波(MATLAB函数“ medfilt2”)。然后,我们平衡每个视网膜扫描的视在信噪比。执行此操作是因为OCT图像的SNR因患者而异,并且SNR的调整可确保对囊状液进行一致的分割。图像堆栈中的视在噪声N取为图像左上角27×40窗口内的平均像素值。信号S被视为27×40窗口内的平均像素值,该窗口位于距最右图像侧54个像素的位置,该位置从与NFL内插曲线的最底行相邻的行开始。 N和S的值在整个堆栈中以y为平均值。然后,使用等式If =(I0-N)/(SN)对图像数据进行SNR平衡,其中I0是初始像素值,If是最终像素值,其存储为之间的浮点值0和1(请参见图3,顶部面板)。
C.双边过滤
双向滤波的作用是在保留距离的同时,通过基于距离和像素强度的相似性对相邻像素进行加权来平滑图像数据。然而,以高斯函数形式计算双边滤波器在计算上是昂贵的并且对于OCT图像堆栈分析是不切实际的。在这里,我们采用文献[22]中所述的快速双边滤波方法,将2-D图像扩展到3-D空间,并策略性地对采样进行下采样以加快滤波器的速度,而不会不利地影响结果的质量。光度扩展和几何扩展分别为σp=(强度范围/10)=(1/10)=0.1和σg=(宽度/ 16)=(270/16)= 17个像素。传统双边滤波器(MATLAB函数“ bfilter2”)对每个B模式图像的计算时间约为4 s,而[22]中的方法对每个图像的计算时间仅为0.4 s。我们注意到,每个图像的处理时间与其他散斑去噪方法[19],[20]所报告的CPU时间相比具有竞争优势,但需要注意的是,只有在相同处理器上使用相同图像数据才能进行精确比较。如图3的底部面板所示,双侧过滤器可有效去除斑点,同时在囊状液和视网膜组织之间保持清晰的边缘。
D.阈值和边界跟踪
然后,潜在的囊状ROI由视网膜内ROI的连续像素区域定义,该区域低于经验值31,如图4顶部面板所示。我们选择此阈值非常敏感,但特异性低,具有 下一步计划拒绝FP。 为了进行下一步,我们使用Moore-neighbor跟踪算法跟踪阈值像素边界,该算法在每个2-D B模式图像中由Jacob的停止准则[26],[27]修改,如 MATLAB。 这在每个B模式图像中定义了离散数量的连续区域(囊状ROI)。
图4。阈值的OCT图像。 (上图)囊肿鉴别之前。 (下图)囊肿鉴别后。
E.拒绝计划生育
尽管先前描述的过程经过定制以捕获尽可能多的囊状ROI,但我们发现,实际上,它还确定了许多FP CME区域。为了提高特异性,我们采用了两个标准来拒绝FP ROI。首先,囊状ROI必须具有至少7个像素的迹线区域。如通过比较图4的顶部面板和底部面板所示出的,这趋于去除光学散射信号较低的外部网状层(OPL)内的FP。其次,我们发现真实正值(TP)具有合理均匀的像素强度分布,因此,我们拒绝了像素值的标准偏差大于经验确定值45的区域。这倾向于拒绝来自血管的FP。具有阴影伪影的对象延伸到紧挨着下面的图层中。但是,我们发现在低SNR的堆栈中,该标准也导致了某些TP的拒绝。因此,为像素均匀性指标分配了一个开关。如果SNR≥22,则应用像素均匀性度量;否则,将使用像素均匀性度量。如果不是,则不使用该数据进行处理。
图5显示了叠加在图2中原始视网膜图像上的最终囊状ROI。