你是我的眼:水哥王昱珩带你重新打量这世界

 “水哥”王昱珩在《最强大脑》舞台上凭借着“微观辨水”一战成名。

  在节目中,他以1秒四杯的速度从520杯同质同量同水源的水中,迅速找出了之前被随机选中的那杯,甚至看出了这杯水从被选中拿起观察再到放回原位,水杯摆放的角度旋转了15度。

  完成挑战之后,水哥向好奇的观众解释了自己的方法:“我是用想象力。”嘉宾陶晶莹当场惊叹:“这么玄?!”

  水哥眼中的世界http://www.pvc123.com/b-bydz/

  水哥解释说:自己之所以拥有这样独特的观察能力,只是因为他有更多的闲工夫愿意安静下来看一些东西。他在集中注意力观察的时候,会把杯中的水想象成一幅画,比如说一张孩子的脸。

  这个令人惊讶的回答果然引发了更多人的好奇:水哥眼中的世界到底是什么样的?

  时隔一年,水哥终于在他的小讲《水哥带你看世界:发现观察的乐趣》当中,亲口为大家描述展示他了观察世界的方法,而且水哥列举了自己的案例,让大家能够一窥水哥眼中的世界。

  在水哥看来,观察其实就是一个“观”和一个“察”,观的重点在于看,察则是一种分析、一种梳理和解决。

  在小讲当中,他举了这样一个例子:

  比如我在那会儿繁殖短鲷鱼的时候,有一些短鲷是比较原生的,人工繁殖很困难,甚至母鱼憋到最后肚子憋炸了它也不生。

  那我在尝试的就是把这个浴缸里面塞满了水草,因为短鲷有些是在罐里繁殖、罐里产卵,有些是在瓦片上产卵,有些是在石头上产卵,它不一样。如果这个物种我没养过,我也不知道它是哪一种,也查不到资料,所以我将这些东西都放在里面,然后去观察它会在哪产卵。

  同时你还需要知道当地的水文,比如为什么这个鱼要长得那么鲜艳,尤其是公鱼。

  我就在想,是不是因为当地的水太浑了。就像北京我估计以后穿鲜艳衣服的人肯定会越来越多,因为雾霾太大嘛,有可能就找不着人了。那这鱼可能也是一样,所以颜色就特别鲜艳。

  那什么时候水会浑呢?一定是下雨的时候水会浑,下雨的时候,雨水冲击了泥沙,水会变浑。这个时候水里面充满了腐殖质、充满了落叶,这个水一定会变酸,它一定是酸性的水,那么你就应该首先调节这个水的酸碱度,同时放一些树叶、木头把这个水的颜色加重。

  对于水哥来说,他独特的观察能力已经成为了他日常生活中的自然而然的行为,能够给他带来非常多的乐趣,这些经验和想法都已经被他毫无保留地浓缩到了这次的小讲《水哥带你看世界:发现观察的乐趣》中。

  水哥的分答小讲

  王昱珩,毕业于清华大学美术学院。《最强大脑第二季》选手,《最强大脑第三季》中国队队长之一。

  他在第二季节目中的「微观辨水」环节,凭借惊人的观察能力名声大噪,被网友称为「水哥」。目前王昱珩已经在分答上回答了600个问题,超过100000人听过他的语音回答,并且吸引了超过160000人收听他的页面。

  听过这次小讲,你将会:

  了解水哥观察世界的独特视角;

  更新自己对记忆、想象和观察的认知;

  在日常生活中找到思考和创造的乐趣。

  谁不可错过这次小讲:

  所有喜爱水哥、对世界充满好奇的朋友。

数据集介绍:多类别动物目标检测数据集 一、基础信息 数据集名称:多类别动物目标检测数据集 图片数量: - 训练集:6,860张图片 - 验证集:1,960张图片 - 测试集:980张图片 总计:9,800张含动态场景的动物图像 分类类别: Alpaca(羊驼)、Camel(骆驼)、Fox(狐狸)、Lion(狮子)、Mouse(鼠类)、Ostrich(鸵鸟)、Pig(猪)、Rabbit(兔子)、Rhinoceros(犀牛)、Shark(鲨鱼)、Sheep(绵羊)、Snake(蛇)、Whale(鲸鱼) 标注格式: YOLO格式标注,包含目标检测所需的归一化坐标及类别索引,适用于YOLOv5/v7/v8等系列模型训练。 数据特性: 覆盖航拍、地面视角等多种拍摄角,包含动态行为捕捉及群体/单体目标场景。 二、适用场景 野生动物监测系统: 支持构建无人机/红外相机AI识别系统,用于自然保护区动物种群追踪与生态研究。 智慧农业管理: 适用于畜牧养殖场动物行为分析、数量统计及健康监测等自动化管理场景。 生物多样性研究: 为陆地/海洋生物分布研究提供标注数据支撑,助力濒危物种保护项目。 教育科研应用: 可作为计算机视觉课程实践素材,支持目标检测、迁移学习等AI教学实验。 三、数据集优势 跨物种覆盖全面: 包含13类陆生/生动物,涵盖家畜、野生动物及濒危物种,支持复杂场景下的模型泛化训练。 动态场景丰富: 捕捉动物运动、群体互动等真实行为模式,提升模型对非静态目标的检测鲁棒性。 标注体系规范: 严格遵循YOLO标注标准,提供精确的边界框定位,支持即插即用的模型训练流程。 多场景适配性: 数据来源涵盖航拍影像、地面监控等多维视角,适用于农业、生态保护、科研等跨领域应用。 类别平衡优化: 通过分层抽样保证各类别数据分布合理性,避免长尾效应影响模型性能。
数据集介绍:陆生动物多场景目标检测数据集 一、基础信息 数据集名称:陆生动物多场景目标检测数据集 数据规模: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 分类类别: - 家畜类:Cattle(牛)、Horse(马)、Sheep(羊) - 宠物类:Cat(猫)、Dog(狗) - 野生动物类:Bear(熊)、Deer(鹿)、Elephant(大象)、Monkey(猴子) - 禽类:Chicken(鸡) 标注格式: YOLO格式标注,包含目标边界框坐标和10类动物标签,支持多目标检测场景 数据特性: 涵盖俯拍视角、户外自然场景、牧场环境等多角拍摄数据 二、适用场景 农业智能化管理: 支持开发牲畜数量统计、行为分析系统,适用于现代化牧场管理 野生动物保护监测: 可用于构建自然保护区动物识别系统,支持生物多样性研究 智能安防系统: 训练农场入侵检测模型,识别熊等危险野生动物 宠物智能硬件: 为宠物智能项圈等设备提供多动物识别训练数据 教育科研应用: 适用于动物行为学研究和计算机视觉教学实验 三、数据集优势 物种覆盖全面: 包含10类高价值陆生动物,覆盖畜牧、宠物、野生动物三大场景需求 标注质量优异: YOLO格式标注严格遵循标准规范,支持YOLOv5/v7/v8等主流检测框架直接训练 场景多样性突出: 包含航拍视角、近距离特写、群体活动等多种拍摄角和场景 大规模训练保障: 超12,000张标注图片满足深神经网络训练需求 现实应用适配性: 特别包含动物遮挡、群体聚集等现实场景样本,提升模型部署效果
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值