背包九讲——01背包

题目:

01背包问题
有N件物品和一个容量为V 的背包。放入第i件物品耗费的空间是Ci,得到的价值是Wi。求解将哪些物品装入背包可使价值总和最大。


所属专栏:戳我访问


01背包是动态规划的入门题目。也是《背包问题九讲》里的第一讲。
我们先来看看《背包问题九讲》是怎么讲的:

基本思路
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

我的理解是:因为f[i][v]表示前i个物品,放v的空间,且一件物品只有放,和不放这两个状态,所以转移方程是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

其中f[i-1][v]表示用前i-1个物品,v的容量,也就表示不放,而下一个就表示放。
这里来分析一下01背包:
这里分析的方法采用之前讲到的分析方法,如果你不知道这个方法,请访问:戳我访问
状态表达:f[i][v]表示用前i件物品,v的容量,所能获得的最大价值。
状态转移:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
状态数量:nv
转移代价:O(1)
时间复杂度:O(nv)
空间复杂度:O(nv)
代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>

int c[1001],w[1001],f[1001][1001];
int main()
{
    int n,v;
    std::cin>>n>>v;
    for(int i = 1;i<=n;i++)std::cin>>c[i]>>w[i];
    for(int i = 1;i<=n;i++)
        for(int j = 1;j<=v;j++)
            if(w[i]>j)f[i][j] = f[i-1][j];
            else f[i][j] = std::max(f[i-1][j],f[i-1][j-c[i]]+w[i]);
    std::cout<<f[n][v];
    return 0;
} 

然而,问题到这里还没有结束,我们可以发现到这里我们的空间复杂度是O(nv),但是如果n*v是一个很大的值,那么就如爆空间,这里来优化一下空间复杂度,先来看看《背包问题九讲》里是怎么优化空间复杂度的:

优化空间复杂度
以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。伪代码如下:

for i=1..N
    for v=V..0
        f[v]=max{f[v],f[v-c[i]]+w[i]};

其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。
事实上,使用一维数组解01背包的程序在后面会被多次用到,所以这里抽象出一个处理一件01背包中的物品过程,以后的代码中直接调用不加说明。
过程ZeroOnePack,表示处理一件01背包中的物品,两个参数cost、weight分别表明这件物品的费用和价值。
procedure ZeroOnePack(cost,weight)
for v=V..cost
f[v]=max{f[v],f[v-cost]+weight}
注意这个过程里的处理与前面给出的伪代码有所不同。前面的示例程序写成v=V..0是为了在程序中体现每个状态都按照方程求解了,避免不必要的思维复杂度。而这里既然已经抽象成看作黑箱的过程了,就可以加入优化。费用为cost的物品不会影响状态f[0..cost-1],这是显然的。
有了这个过程以后,01背包问题的伪代码就可以这样写:
for i=1..N
ZeroOnePack(c[i],w[i]);


我的理解是,因为当前层的状态转移只需要上一层的状态,那么直接建一个滚动数组即可,因为这个滚动数组只有一维,所以为了不让他重复使用一个物品,所以要逆序枚举v。
代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>

int c[1001],w[1001],f[1001];
int main()
{
    int n,v;
    std::cin>>n>>v;
    for(int i = 1;i<=n;i++)std::cin>>c[i]>>w[i];
    for(int i = 1;i<=n;i++)
        for(int j = v;j>=c[i];j--)
            f[j] = std::max(f[j],f[j-c[i]]+w[i]);
    std::cout<<f[v];
    return 0;
} 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值