线性空间的对偶空间

1 线性函数

n n n维线性空间 V V V上的线性函数是指把 V V V中的元素映射为实数的函数,且满足以下特性,
f ( β + γ ) = f ( β ) + f ( γ ) f ( k β ) = k f ( β ) f(\beta+\gamma)=f(\beta)+f(\gamma)\\[2mm] f(k\beta)=kf(\beta) f(β+γ)=f(β)+f(γ)f(kβ)=kf(β)
所有线性函数构成一个集合 Q Q Q

尝试在这个集合上定义加法如下,
( f + g ) ( β ) = f ( β ) + g ( β ) (f+g)(\beta)=f(\beta)+g(\beta) (f+g)(β)=f(β)+g(β)
可以验证,两个线性函数的和,仍然是线性函数,验证如下,
( f + g ) ( β + γ ) = f ( β + γ ) + g ( β + γ ) = f ( β ) + f ( γ ) + g ( β ) + g ( γ ) = [ f ( β ) + g ( β ) ] + [ f ( γ ) + g ( γ ) ] = ( f + g ) ( β ) + ( f + g ) ( γ ) ( f + g ) ( k β ) = f ( k β ) + g ( k β ) = k f ( β ) + k g ( β ) = k ( f + g ) ( β ) (f+g)(\beta+\gamma)=f(\beta+\gamma)+g(\beta+\gamma)=f(\beta)+f(\gamma)+g(\beta)+g(\gamma)=[f(\beta)+g(\beta)]+[f(\gamma)+g(\gamma)]=(f+g)(\beta)+(f+g)(\gamma)\\[2mm] (f+g)(k\beta)=f(k\beta)+g(k\beta)=kf(\beta)+kg(\beta)=k(f+g)(\beta) (f+g)(β+γ)=f(β+γ)+g(β+γ)=f(β)+f(γ)+g(β)+g(γ)=[f(β)+g(β)]+[f(γ)+g(γ)]=(f+g)(β)+(f+g)(γ)(f+g)(kβ)=f(kβ)+g(kβ)=kf(β)+kg(β)=k(f+g)(β)
因此,集合 Q Q Q对此种定义的加法封闭,定义的加法是合理的,并且显然,该加法满足交换律。

尝试在集合上定义数乘如下,
( k f ) ( β ) = k f ( β ) (kf)(\beta)=kf(\beta) (kf)(β)=kf(β)
可以验证,一个线性函数的数乘结果,仍然是线性函数,验证如下,
( k f ) ( β + γ ) = k f ( β + γ ) = k f ( β ) + k f ( γ ) = ( k f ) ( β ) + ( k f ) ( γ ) ( k f ) ( c β ) = k f ( c β ) = k c f ( β ) = c k f ( β ) = c ( k f ) ( β ) (kf)(\beta+\gamma)=kf(\beta+\gamma)=kf(\beta)+kf(\gamma)=(kf)(\beta)+(kf)(\gamma)\\[2mm] (kf)(c\beta)=kf(c\beta)=kcf(\beta)=ckf(\beta)=c(kf)(\beta) (kf)(β+γ)=kf(β+γ)=kf(β)+kf(γ)=(kf)(β)+(kf)(γ)(kf)(cβ)=kf(cβ)=kcf(β)=ckf(β)=c(kf)(β)
因此,集合 Q Q Q对此种定义的数乘封闭,定义的数乘是合理的。

集合 Q Q Q中的零元是把任何 V V V中的元素映射为实数0的线性函数,可以证明,该零元是唯一的。线性空间需要满足的其它条件比较容易验证。

综上所述 ,集合 Q Q Q是线性空间。

定义了加法和数乘, Q Q Q中元素的线性组合,仍然是 Q Q Q中的元素。

2 对偶空间

2.1 取坐标函数

给定 n n n维线性空间 V V V一组基
α 1 , α 2 , α 3 . . . α n \alpha_1,\alpha_2,\alpha_3...\alpha_n α1,α2,α3...αn
则每个向量 β \beta β都有一个坐标表达,
β = a i α i \beta=a_i\alpha_i β=aiαi
自然有唯一(向量在固定基下坐标的唯一性)一组 n n n个取坐标函数 f i ( β ) = a i f_i(\beta)=a_i fi(β)=ai

命题:存在两组不同的基对应相同的一组取坐标函数。因为每个取坐标函数定义域都是线性空间 V V V,所以此命题等价于线性空间 V V V中存在两组不同的基使所有的向量在这两组基下的坐标相同,易证此命题为假。虽然存在线性空间 V V V的一个子集中的所有向量在两组不同基下的坐标相等的情况,比如两组基的过渡矩阵的逆矩阵有等于1的特征值时。

另有一个向量 γ = c i α i \gamma=c_i\alpha_i γ=ciαi及任意实数 k k k,对任一 f j f_j fj有如下关系,
f j ( β + γ ) = f j ( a i α i + c i α i ) = f j ( ( a i + c i ) α i ) = a j + c j = f j ( β ) + f j ( γ ) f j ( k β ) = f j ( k a i α i ) = k a j = k f j ( β ) f_j(\beta+\gamma)=f_j(a_i\alpha_i+c_i\alpha_i)=f_j((a_i+c_i)\alpha_i)=a_j+c_j=f_j(\beta)+f_j(\gamma)\\[2mm] f_j(k\beta)=f_j(ka_i\alpha_i)=ka_j=kf_j(\beta) fj(β+γ)=fj(aiαi+ciαi)=fj((ai+ci)αi)=aj+cj=fj(β)+fj(γ)fj(kβ)=fj(kaiαi)=kaj=kfj(β)
故取坐标函数 f i f_i fi是线性函数,即 f i ∈ Q f_i\in Q fiQ

2.2 取坐标函数张出线性空间

取坐标函数 f i ∈ Q f_i\in Q fiQ线性无关,证明如下,

假设线性相关,即存在一组不全为0的实数 c i c_i ci使得下式成立,
c i f i = 0 c_if_i=0 cifi=0
则对于任一向量 β = a j α j \beta=a_j\alpha_j β=ajαj
( c i f i ) ( β ) = c i f i ( β ) = c i a i = 0 (c_if_i)(\beta)=c_if_i(\beta)=c_ia_i=0 (cifi)(β)=cifi(β)=ciai=0
上式对任意 β \beta β恒成立,因此 c i = 0 c_i=0 ci=0 ,与"一组不全为0的实数 c i c_i ci"矛盾,所以取坐标函数 f i ∈ Q f_i\in Q fiQ线性无关。 f i f_i fi张成的 n n n维线性空间 V ∗ V^* V Q Q Q的子空间。

Q Q Q中任一元素 g g g
g ( β ) = g ( a i α i ) = a i g ( α i ) = f i ( β ) g ( α i ) = ( g ( α i ) f i ) ( β ) g(\beta)=g(a_i\alpha_i)=a_ig(\alpha_i)=f_i(\beta)g(\alpha_i)=(g(\alpha_i)f_i)(\beta) g(β)=g(aiαi)=aig(αi)=fi(β)g(αi)=(g(αi)fi)(β)

g = g ( α i ) f i g=g(\alpha_i)f_i g=g(αi)fi
g g g可以表达为 f i f_i fi的线性组合,因此 g ∈ V ∗ g\in V^* gV,所以 V ∗ = Q V^*=Q V=Q,把 V ∗ V^* V(即 V V V上所有线性函数组成的线性空间)称为 V V V的对偶空间, f i f_i fi称为 α i \alpha_i αi的对偶基。

3 对偶性

线性空间 V V V与其对偶空间 V ∗ V^* V维数相等, V V V中的任意一组基 α i \alpha_i αi V ∗ V^* V中有且仅有一组对偶基 f i f_i fi,并且不同的两组基对应两组不同的对偶基,即基与对偶基是一一对应的。基与其对偶基有如下关系,
f i ( α j ) = δ i j f_i(\alpha_j)=\delta_{ij} fi(αj)=δij
对于 V V V中的任一向量 β = a i α i \beta=a_i\alpha_i β=aiαi
f j ( β ) = a j f_j(\beta)=a_j fj(β)=aj
对于 V ∗ V^* V中的任一向量 g = c i f i g=c_if_i g=cifi
g ( α j ) = c j g(\alpha_j)=c_j g(αj)=cj
f i f_i fi V V V中向量的取坐标函数,同时 α i \alpha_i αi V ∗ V^* V中向量的取坐标函数。

向量 g g g作用于向量 β \beta β如下,是坐标对应相乘求和,相当于一个双线性函数,这个函数的值依赖于基的选择,体现不出明显的对偶性。
g ( β ) = ( c i f i ) ( a j α j ) = c i a j f i ( α j ) = c i a i g(\beta)=(c_if_i)(a_j\alpha_j)=c_ia_jf_i(\alpha_j)=c_ia_i g(β)=(cifi)(ajαj)=ciajfi(αj)=ciai
若向量 g g g与向量 β \beta β坐标相同均为 c i c_i ci,则 g ( β ) = c i c i g(\beta)=c_ic_i g(β)=cici,即坐标平方和,也没什么特别之处,所以一般没有 V V V中某一向量与 V ∗ V^* V中某一向量有对偶关系的说法,但”坐标相同“确实构造了一个 V V V V ∗ V^* V之间的一个线性双射(同构映射),并且”坐标相同“在 V ∗ V^* V V ∗ V^* V的对偶空间 V ∗ ∗ V^{**} V∗∗之间同样构造了一个同构映射,从而在 V V V V ∗ ∗ V^{**} V∗∗间建立了一个同构映射,这个映射在 V V V的基变换下保持不变,故叫做自然同构映射。另外自然同构映射的象、原象分别与 V ∗ V^* V中的任一元素作用值相等,故可以把 V V V V ∗ ∗ V^{**} V∗∗等同起来,所以有 V V V经过两次对偶又回到自身的意思。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值