1 线性函数
n
n
n维线性空间
V
V
V上的线性函数是指把
V
V
V中的元素映射为实数的函数,且满足以下特性,
f
(
β
+
γ
)
=
f
(
β
)
+
f
(
γ
)
f
(
k
β
)
=
k
f
(
β
)
f(\beta+\gamma)=f(\beta)+f(\gamma)\\[2mm] f(k\beta)=kf(\beta)
f(β+γ)=f(β)+f(γ)f(kβ)=kf(β)
所有线性函数构成一个集合
Q
Q
Q。
尝试在这个集合上定义加法如下,
(
f
+
g
)
(
β
)
=
f
(
β
)
+
g
(
β
)
(f+g)(\beta)=f(\beta)+g(\beta)
(f+g)(β)=f(β)+g(β)
可以验证,两个线性函数的和,仍然是线性函数,验证如下,
(
f
+
g
)
(
β
+
γ
)
=
f
(
β
+
γ
)
+
g
(
β
+
γ
)
=
f
(
β
)
+
f
(
γ
)
+
g
(
β
)
+
g
(
γ
)
=
[
f
(
β
)
+
g
(
β
)
]
+
[
f
(
γ
)
+
g
(
γ
)
]
=
(
f
+
g
)
(
β
)
+
(
f
+
g
)
(
γ
)
(
f
+
g
)
(
k
β
)
=
f
(
k
β
)
+
g
(
k
β
)
=
k
f
(
β
)
+
k
g
(
β
)
=
k
(
f
+
g
)
(
β
)
(f+g)(\beta+\gamma)=f(\beta+\gamma)+g(\beta+\gamma)=f(\beta)+f(\gamma)+g(\beta)+g(\gamma)=[f(\beta)+g(\beta)]+[f(\gamma)+g(\gamma)]=(f+g)(\beta)+(f+g)(\gamma)\\[2mm] (f+g)(k\beta)=f(k\beta)+g(k\beta)=kf(\beta)+kg(\beta)=k(f+g)(\beta)
(f+g)(β+γ)=f(β+γ)+g(β+γ)=f(β)+f(γ)+g(β)+g(γ)=[f(β)+g(β)]+[f(γ)+g(γ)]=(f+g)(β)+(f+g)(γ)(f+g)(kβ)=f(kβ)+g(kβ)=kf(β)+kg(β)=k(f+g)(β)
因此,集合
Q
Q
Q对此种定义的加法封闭,定义的加法是合理的,并且显然,该加法满足交换律。
尝试在集合上定义数乘如下,
(
k
f
)
(
β
)
=
k
f
(
β
)
(kf)(\beta)=kf(\beta)
(kf)(β)=kf(β)
可以验证,一个线性函数的数乘结果,仍然是线性函数,验证如下,
(
k
f
)
(
β
+
γ
)
=
k
f
(
β
+
γ
)
=
k
f
(
β
)
+
k
f
(
γ
)
=
(
k
f
)
(
β
)
+
(
k
f
)
(
γ
)
(
k
f
)
(
c
β
)
=
k
f
(
c
β
)
=
k
c
f
(
β
)
=
c
k
f
(
β
)
=
c
(
k
f
)
(
β
)
(kf)(\beta+\gamma)=kf(\beta+\gamma)=kf(\beta)+kf(\gamma)=(kf)(\beta)+(kf)(\gamma)\\[2mm] (kf)(c\beta)=kf(c\beta)=kcf(\beta)=ckf(\beta)=c(kf)(\beta)
(kf)(β+γ)=kf(β+γ)=kf(β)+kf(γ)=(kf)(β)+(kf)(γ)(kf)(cβ)=kf(cβ)=kcf(β)=ckf(β)=c(kf)(β)
因此,集合
Q
Q
Q对此种定义的数乘封闭,定义的数乘是合理的。
集合 Q Q Q中的零元是把任何 V V V中的元素映射为实数0的线性函数,可以证明,该零元是唯一的。线性空间需要满足的其它条件比较容易验证。
综上所述 ,集合 Q Q Q是线性空间。
定义了加法和数乘, Q Q Q中元素的线性组合,仍然是 Q Q Q中的元素。
2 对偶空间
2.1 取坐标函数
给定
n
n
n维线性空间
V
V
V一组基
α
1
,
α
2
,
α
3
.
.
.
α
n
\alpha_1,\alpha_2,\alpha_3...\alpha_n
α1,α2,α3...αn
则每个向量
β
\beta
β都有一个坐标表达,
β
=
a
i
α
i
\beta=a_i\alpha_i
β=aiαi
自然有唯一(向量在固定基下坐标的唯一性)一组
n
n
n个取坐标函数
f
i
(
β
)
=
a
i
f_i(\beta)=a_i
fi(β)=ai 。
命题:存在两组不同的基对应相同的一组取坐标函数。因为每个取坐标函数定义域都是线性空间 V V V,所以此命题等价于线性空间 V V V中存在两组不同的基使所有的向量在这两组基下的坐标相同,易证此命题为假。虽然存在线性空间 V V V的一个子集中的所有向量在两组不同基下的坐标相等的情况,比如两组基的过渡矩阵的逆矩阵有等于1的特征值时。
另有一个向量
γ
=
c
i
α
i
\gamma=c_i\alpha_i
γ=ciαi及任意实数
k
k
k,对任一
f
j
f_j
fj有如下关系,
f
j
(
β
+
γ
)
=
f
j
(
a
i
α
i
+
c
i
α
i
)
=
f
j
(
(
a
i
+
c
i
)
α
i
)
=
a
j
+
c
j
=
f
j
(
β
)
+
f
j
(
γ
)
f
j
(
k
β
)
=
f
j
(
k
a
i
α
i
)
=
k
a
j
=
k
f
j
(
β
)
f_j(\beta+\gamma)=f_j(a_i\alpha_i+c_i\alpha_i)=f_j((a_i+c_i)\alpha_i)=a_j+c_j=f_j(\beta)+f_j(\gamma)\\[2mm] f_j(k\beta)=f_j(ka_i\alpha_i)=ka_j=kf_j(\beta)
fj(β+γ)=fj(aiαi+ciαi)=fj((ai+ci)αi)=aj+cj=fj(β)+fj(γ)fj(kβ)=fj(kaiαi)=kaj=kfj(β)
故取坐标函数
f
i
f_i
fi是线性函数,即
f
i
∈
Q
f_i\in Q
fi∈Q。
2.2 取坐标函数张出线性空间
取坐标函数 f i ∈ Q f_i\in Q fi∈Q线性无关,证明如下,
假设线性相关,即存在一组不全为0的实数
c
i
c_i
ci使得下式成立,
c
i
f
i
=
0
c_if_i=0
cifi=0
则对于任一向量
β
=
a
j
α
j
\beta=a_j\alpha_j
β=ajαj
(
c
i
f
i
)
(
β
)
=
c
i
f
i
(
β
)
=
c
i
a
i
=
0
(c_if_i)(\beta)=c_if_i(\beta)=c_ia_i=0
(cifi)(β)=cifi(β)=ciai=0
上式对任意
β
\beta
β恒成立,因此
c
i
=
0
c_i=0
ci=0 ,与"一组不全为0的实数
c
i
c_i
ci"矛盾,所以取坐标函数
f
i
∈
Q
f_i\in Q
fi∈Q线性无关。
f
i
f_i
fi张成的
n
n
n维线性空间
V
∗
V^*
V∗是
Q
Q
Q的子空间。
对
Q
Q
Q中任一元素
g
g
g,
g
(
β
)
=
g
(
a
i
α
i
)
=
a
i
g
(
α
i
)
=
f
i
(
β
)
g
(
α
i
)
=
(
g
(
α
i
)
f
i
)
(
β
)
g(\beta)=g(a_i\alpha_i)=a_ig(\alpha_i)=f_i(\beta)g(\alpha_i)=(g(\alpha_i)f_i)(\beta)
g(β)=g(aiαi)=aig(αi)=fi(β)g(αi)=(g(αi)fi)(β)
即
g
=
g
(
α
i
)
f
i
g=g(\alpha_i)f_i
g=g(αi)fi
g
g
g可以表达为
f
i
f_i
fi的线性组合,因此
g
∈
V
∗
g\in V^*
g∈V∗,所以
V
∗
=
Q
V^*=Q
V∗=Q,把
V
∗
V^*
V∗(即
V
V
V上所有线性函数组成的线性空间)称为
V
V
V的对偶空间,
f
i
f_i
fi称为
α
i
\alpha_i
αi的对偶基。
3 对偶性
线性空间
V
V
V与其对偶空间
V
∗
V^*
V∗维数相等,
V
V
V中的任意一组基
α
i
\alpha_i
αi在
V
∗
V^*
V∗中有且仅有一组对偶基
f
i
f_i
fi,并且不同的两组基对应两组不同的对偶基,即基与对偶基是一一对应的。基与其对偶基有如下关系,
f
i
(
α
j
)
=
δ
i
j
f_i(\alpha_j)=\delta_{ij}
fi(αj)=δij
对于
V
V
V中的任一向量
β
=
a
i
α
i
\beta=a_i\alpha_i
β=aiαi
f
j
(
β
)
=
a
j
f_j(\beta)=a_j
fj(β)=aj
对于
V
∗
V^*
V∗中的任一向量
g
=
c
i
f
i
g=c_if_i
g=cifi
g
(
α
j
)
=
c
j
g(\alpha_j)=c_j
g(αj)=cj
即
f
i
f_i
fi是
V
V
V中向量的取坐标函数,同时
α
i
\alpha_i
αi是
V
∗
V^*
V∗中向量的取坐标函数。
向量
g
g
g作用于向量
β
\beta
β如下,是坐标对应相乘求和,相当于一个双线性函数,这个函数的值依赖于基的选择,体现不出明显的对偶性。
g
(
β
)
=
(
c
i
f
i
)
(
a
j
α
j
)
=
c
i
a
j
f
i
(
α
j
)
=
c
i
a
i
g(\beta)=(c_if_i)(a_j\alpha_j)=c_ia_jf_i(\alpha_j)=c_ia_i
g(β)=(cifi)(ajαj)=ciajfi(αj)=ciai
若向量
g
g
g与向量
β
\beta
β坐标相同均为
c
i
c_i
ci,则
g
(
β
)
=
c
i
c
i
g(\beta)=c_ic_i
g(β)=cici,即坐标平方和,也没什么特别之处,所以一般没有
V
V
V中某一向量与
V
∗
V^*
V∗中某一向量有对偶关系的说法,但”坐标相同“确实构造了一个
V
V
V与
V
∗
V^*
V∗之间的一个线性双射(同构映射),并且”坐标相同“在
V
∗
V^*
V∗与
V
∗
V^*
V∗的对偶空间
V
∗
∗
V^{**}
V∗∗之间同样构造了一个同构映射,从而在
V
V
V与
V
∗
∗
V^{**}
V∗∗间建立了一个同构映射,这个映射在
V
V
V的基变换下保持不变,故叫做自然同构映射。另外自然同构映射的象、原象分别与
V
∗
V^*
V∗中的任一元素作用值相等,故可以把
V
V
V与
V
∗
∗
V^{**}
V∗∗等同起来,所以有
V
V
V经过两次对偶又回到自身的意思。