机器学习5之自然语言处理

本文介绍了自然语言处理的处理流程,包括语音识别、语义分析和文本分类。首先,讲解了从训练文本的分词处理到构建有监督分类模型的过程。接着,提到了自然语言工具包NLTK在处理中的应用。此外,还涵盖了文本分析和语音识别的关键点。
摘要由CSDN通过智能技术生成

1.处理流程

  1. 语音识别

  2. 自然语言处理 - 语义分析

  3. 逻辑分析 - 结合业务场景与上下文

  4. 自然语言处理 - 分析结果生成自然语言文本

  5. 语音合成

自然语言处理的常用处理过程:

先针对训练文本进行分词处理(词干提取、原型提取),统计词频,通过词频-逆文档频率算法获得该词对样本语义的贡献,根据每个词的贡献力度,构建有监督分类学习模型。把测试样本交给模型处理,得到测试样本的语义类别。

自然语言工具包 - NLTK

2.文本分析

# 文本分词
"""
可能要使用以下操作
import nltk
nltk.download('puntk')

import nltk.tokenize as tk
# 把样本按句子进行拆分  sent_list:句子列表
sent_list = tk.sent_tokenize(text)
# 把样本按单词进行拆分  word_list:单词列表
word_list = tk.word_tokenize(text)
#  把样本按单词进行拆分 punctTokenizer:分词器对象
punctTokenizer = tk.WordPunctTokenizer()
word_list = punctTokenizer.tokenize(text)
"""

import nltk.tokenize as tk
import nltk.stem.porter as pt
import nltk.stem.lancaster as lc
import nltk.stem.snowball as sb
text = "Are you curious about tokenization? " \
      "Let's see how it works! " \
      "We need to analyze a couple of sentences " \
      "with punctuations to see it in action."
print(text)
sent_list = tk.sent_tokenize(text)
print(sent_list)
word_list = tk.word_tokenize(text)
print(word_list)
# 分词器对象
punctTokenlizer = tk.WordPunctTokenizer()
tokens = punctTokenlizer.tokenize(text)
print(tokens)

# 词干提取
"""
stemmer = pt.PorterStemmer() # 波特词干提取器,偏宽松
stemmer = lc.LancasterStemmer() # 朗卡斯特词干提取器,偏严格
stemmer = sb.SnowballStemmer('english') # 思诺博词干提取器,偏中庸
"""
words = ['table', 'probably', 'wolves', 'playing',
         'is', 'dog', 'the', 'beaches', 'grounded',
         'dreamt', 'envision']
pt_stemmer = pt.PorterStemmer()
lc_stemmer = lc.LancasterStemmer()
sb_stemmer = sb.SnowballStemmer('english')

for word in words:
      pt_stem = pt_stemmer.stem(word)
      lc_stem = pt_stemmer.stem(word)
      sb_stem = sb_stemmer.stem(word)
      print('%8s %8s %8s %8s' %
            (word, pt_stem, lc_stem,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值