复杂链表的复制

题目描述

输入一个复杂链表(每个节点中有节点值,以及两个指针,一个指向下一个节点,另一个特殊指针指向任意一个节点),返回结果为复制后复杂链表的head。(注意,输出结果中请不要返回参数中的节点引用,否则判题程序会直接返回空)

本质上是做一个复杂链表的副本,首先在原链表后面增加一个副本节点,副本节点的val和指针与原链表保持同步,然后把副本链表分离出来就可以了。


首先是节点复制,*pnode=1,插入副本节点pclone,pclone.next=pnode.next;pnode.next=pclone;pnode=pclone.next;

随机节点的指向,当pnode指向随机节点,pclone指向pnode指向随机节点的下一个节点,pclone.random=pnode.random.next;

最后是链表的分离,主要是断开pnode与pclone.pnode.next=pclone.next,处理下一个节点,pnode=pnode.next.若此时pnode为空,结束;

若非空,断开pclone与pnode,pclone.next=pnode.next.处理下一个副本,pclone=pclone.next。


/*
struct RandomListNode {
    int label;
    struct RandomListNode *next, *random;
    RandomListNode(int x) :
            label(x), next(NULL), random(NULL) {
    }
};
*/
class Solution {
public:
    RandomListNode* Clone(RandomListNode* pHead)
    {
        copy(pHead);
        connectnode(pHead);
        return reconnectnode(pHead);
    }
    void copy(RandomListNode* pHead)
    {
        RandomListNode* pnode=pHead;
        while(pnode)
        {
            RandomListNode* pclone=new RandomListNode(pnode->label);
           
            pclone->next=pnode->next;
            pclone->random=NULL;
            
            pnode->next=pclone;
            pnode=pclone->next;
        }
    }
    void connectnode(RandomListNode* pHead)
    {
        RandomListNode* pnode=pHead;
        while(pnode)
        {
            RandomListNode* pclone=pnode->next;
            if(pnode->random!=NULL)
                pclone->random=pnode->random->next;
            pnode=pclone->next;
        }
    }
    RandomListNode* reconnectnode(RandomListNode* pHead)
    {
        RandomListNode* pnode=pHead;
        RandomListNode* pclonehead=NULL;
        RandomListNode* pclone=NULL;
        if(pnode)
        {
            pclonehead=pclone=pnode->next;
            pnode->next=pclone->next;
            pnode=pnode->next;
        }
        while(pnode)
        {
            pclone->next=pnode->next;
            pclone=pclone->next;
            
            pnode->next=pclone->next;
            pnode=pnode->next;
        }
        return pclonehead;
    }
   
};


深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值