工业互联网数据资产梳理解决思路

一、数据资产整理的重要性

数据资产整理是数据安全治理和数据安全运营的前提和基础。
通过对数据资产的梳理,可以确定企业数据资产在系统内的分布情况,确定数据资产的访问方式,确定当前账号及其授权状态等。根据数据资产的数据价值和特点,梳理组织内部核心数据资产,分类归类,真正做到数据安全精细化管理。
数据资产整理有效解决了企业资产安全状况和资产管理工作,改进了传统方式的企业资产管理和整理工作模式,既提高了工作效率,又保证了资产整理工作的质量。合规合理的组合方案可以实现风险预估和异常行为评估,很大程度上避免核心数据损坏或泄露的安全事件。
在数据安全治理实践中,特别注重清理敏感数据资产,这是数据安全体系建设和数据资产管理的一项基础性工作。及时准确地对数据资产进行梳理,掌握敏感资产的分布、数量、权限、使用情况等,是后续数据安全治理的基础和先导。
数据资产整理也是国家法律法规、规章、行业数据安全管理办法、数据安全技术标准等明确要求的数据安全管理工作之一。 2022年10月12日颁布、2023年5月1日实施的GB/T 39204-2022《信息安全技术关键信息基础设施安全保护要求》中,数据资产在网络安全等级基础上得到保护。鉴别分拣提出了更高的要求:
《信息安全技术关键信息基础设施安全防护要求》GB/T 39204-2022第6.2节资产标识要求:
识别关键业务相关数据,建立数据资产清单;
能够识别关键业务数据变化并动态更新资产状态;
基于数据资产的关键级别实施安全保护。
工业和信息技术领域有许多关键信息基础设施的运营商,大多关系到国计民生乃至国家安全。因此,如何贯彻新国标保护“离库”的关键环节是对数据资产进行有效梳理。随着大数据、云计算、工业物联网等新一代信息技术与工业制造的融合发展,许多工业企业通过互联网提升了设计、生产、制造、运输、服务等能力, “工业数据孤岛”进一步被打破,数据流通共享趋势增强。在此场景下,梳理工业互联网数据资产面临巨大挑战。

二、工业互联网数据特点

工业互联网数据形式多样,类型多样,兼具“工业”和“互联网”属性。工业互联网数据是指工业互联网的新模式、新业态。工业互联网企业在开展研发设计、生产制造、运营管理、应用服务等业务的同时,以客户需求、订单、计划、研发、设计、技术、制造为核心。采购、供应、库存、销售、交付、售后、运维、报废或回收等工业生产经营环节和过程中,产生、收集、传输、存储、使用、共享或归档的数据。
工业互联网数据涉及主体众多,既有包含研发设计数据、制造数据、运营管理数据的工业企业,也有包含平台知识机制、数字模型、工业APP信息等的工业互联网平台企业。工业互联网基础设施运营商,如包含工业网络通信数据和识别分析数据的基础电信运营商和识别分析系统建设运营机构,包含实时设备数据、设备运维数据的系统集成商和工控厂商,以及集成商。测试数据,以及包含工业交易数据的数据交换等。这些不同类型的企业是工业互联网数据产生或使用的主体,也是工业互联网数据安全的责任主体。
工业互联网数据兼具“工业”和“互联网”属性,但与传统网络数据相比,工业互联网数据还具有以下特点:
1.多态性
以关系表格式存储数据库的结构化数据,如生产控制信息、运营管理数据;以时间序列格式存储在时间序列数据库中的结构化数据,如工作状态、云基础设施运行信息;以文档、图片、视频等形式存储的半结构化数据结构化或非结构化数据,如生产监控数据、研发设计数据、外部交互数据等。
2.实时性
工业现场对数据采集、处理和分析的实时性要求很高。
3.可靠性
工业互联网数据高度重视数据质量,在数据采集、传输和使用过程中必须保证数据的真实性、完整性和可靠性,确保工业生产运行的安全稳定。
4.闭环性
工业互联网数据需要在状态感知、分析、反馈、控制等闭环场景中支持动态、持续的调整优化。
5.级联性
不同工业生产环节的数据高度相关,单个环节的数据泄露或篡改可能会引发连锁效应。
6.更有价值属性
工业互联网属性数据更加重视用户价值驱动和数据本身的可用性,以提升创新能力和生产运营效率。
7.更具产权属性
工业互联网数据是在企业实际生产经营过程中产生的,数据的产权明显高于个人用户信息。
8.更具要素属性
工业互联网数据是驱动制造业和数字经济高质量发展的重要引擎,具有更强的生产要素作用。
上述工业互联网数据的特点决定了工业互联网数据资产的梳理必须通过主动检测技术实现数据载体检测,结合被动检测技术实现工业互联网数据应用场景和业务属性识别,通过数据分析、关联等技术。多维数据资产可视化。

三、全息数据资产测绘系统

全息数据资产测绘系统是协助企业完成数据资产整理的技术工具。通过测绘系统的部署实施,通过了解数据资产类型、数据资产分布、数据资产权限,对目标环境中的数据资产进行梳理,即完成全面的清查和梳理、数据资产使用情况等信息,构建数据资产标的录音过程。
全息数据资产测绘系统基于全息专利技术。对数据载体检测、数据资产发现、内容识别、数据分类分级标注进行数据分析关联,最终实现工业互联网数据资产的梳理:
1.多数据源数据关联分析、验证数据资产发现、识别
关于通过数据资产主动检测技术、被动检测技术、敏感数据内容识别技术获得的多方数据源处理后产生的数据资产载体信息、数据资产类别信息、承载数据处理应用系统信息、用户接入信息、等,通过大数据分析技术对数据资产属性进行数据关联、相互完善、补充和验证,最终形成完整、准确的数据资产清单。
2.以数据为中心的多维信息关联分析,实现数据处理活动的识别
参与数据处理活动和影响数据安全的因素主要包括:实体(用户和设备)、访问和操作(应用程序、指令)、数据本身(属性、类别和级别)。
在工业互联网数据安全场景下,测绘数据资产的主要目的是摸清工业互联网数据的类别层级、数据资产的分布情况,识别数据处理环境和数据应用场景。为制定数据安全策略、工业互联网数据安全风险评估、数据安全合规评估、数据安全事件溯源等奠定基础。因此,在数据资产映射过程中,需要发展机器学习或行为分析能力,通过行为监控和智能分析,提供对更高层次数据处理活动的洞察,形成以数据安全为中心的资产知识库(实体)知识库、应用与系统知识库、数据资产库),建立数据活动和数据安全基线,完成数据资产映射。
3.数据资产可视化分析
根据数据安全场景和数据安全管理需求,动态、实时地从数据安全知识库中提取相关信息,形成数据资产可视化和数据安全态势可视化。工业互联网数据涉及跨地域、跨行业、跨行业物理工业设计、研发、制造和服务中的数据量呈指数级增长。数据资产需要实时监控和维护平台的运行状态。数据维护人员需要对大量信息进行分析,监控工业互联网运行数据。然而,面对海量的数据资产,传统的数据搜索方式难以满足当前工业互联网平台的需求。
全息数据资产测绘系统根据工业互联网数据多态性、实时性、关联性等特点,从多维度、多角度充分展示数据资产,将数据转化为表格、线图、柱状图等多种形式,观察数据资产的趋势。利用大数据可视化技术,我们可以创建可视化图表,满足客户对数据资产可视化分析的个性化需求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小正太浩二

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值