数据清洗及可视化相关
文章平均质量分 72
numpy、pandas作为数据分析的常用库,值得好好好研究;
可视化相关内容也再此梳理。
火柴先生
他正在悄悄关注你...
展开
-
【Pandas 优质教程文章分享,持续更新!】
Pandas 是基于 NumPy 的一种数据处理工具,该工具为了解决数据分析任务而创建。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的函数和方法。 这些练习着重DataFrame和Series对象的基本操作,包括数据的索引、分组、统计和清洗。原创 2021-06-29 20:18:44 · 159 阅读 · 0 评论 -
【现学现用】matplotlib画图(plt与ax的关系add_subplot与subplots等)
本篇文章讲述用matplotlib画图,plt与axis(axes)的区别,add_subplot()和subplots用法的区别以及简单用法原创 2022-04-03 16:44:23 · 7201 阅读 · 3 评论 -
【Numpy】数组的创建和常用函数(排序、连接、属性、reshape、索引和切片)
虽然Python列表可以在单个列表中包含不同的数据类型,但NumPy数组中的所有元素都应该是同构的。请记住,当您使用 reshape 方法时,要生成的数组需要具有与原始数组相同数量的元素。与典型的容器对象不同,不同的数组可以共享相同的数据,因此对一个数组所做的更改可能在另一个数组中可见。这是一个被广泛采用的约定,您应该遵循该约定,以便使用您的代码的任何人都可以轻松理解它。例如,如果您有一个包含 2 行和 3 列的二维数组,则数组的形状为。该函数创建一个数组,其初始内容是随机的,并且取决于内存的状态。原创 2022-08-24 17:57:46 · 1710 阅读 · 0 评论 -
【matplotlib】fig,axes=plt.subplots(nrows=2,ncols=2,figsize=(10,10))
平常用matplotlib画图不多,plt与axes的差异一直也没有搞清楚,这一次好好梳理,供自己查阅简单画图x=[1,2,3]Y=[2,3,5]fig,ax=plt.subplots(figsize=(10,5))ax.plot(X,Y)官方图示Figure fig = plt.figure(): 可以解释为画布。画图的第一件事,就是创建一个画布figure,然后在这个画布上加各种元素。下面引用评论区内容解释更好!各种标签直接对照图示进行对应修改即可,多用即可!Re.原创 2022-01-07 15:57:13 · 2806 阅读 · 0 评论 -
CSV文件读取——没有列索引如何处理
在读取CSV文件时,有时会遇到没有列索引的状况,无法直接读取。举例如上图CSV当我们尝试执行read_csv操作后,显然并非我们想要的结果。import pandas as pddf=pd.read_csv('weather_data2.csv')df原因与解决方式原因在pandas.read_csv()函数读取文件时,默认情况下,会把数据内容的第一行默认为字段名标题。方法与参数介绍pd.read_csv( filepath_or_buffer: Union[Forw原创 2021-10-18 07:36:19 · 5261 阅读 · 1 评论 -
【Pandas】解析resample函数中重采样频率‘freq‘用法(附参数说明表)
Pandas中的resample,重采样,是对原样本重新处理的一个方法,是一个对常规时间序列数据重新采样和频率转换的便捷的方法。快来学习一下吧!原创 2021-07-19 08:25:32 · 14904 阅读 · 183 评论