mAP和CMC curve

mAP:(mean average precision)

根据准确率-召回率曲线计算得到,反应召回率

CMC curve:(Cumulative Matching Characteristic)

累计匹配特性曲线,一般用Rank-1, Rank-5, Rank-20 scores代替,反应检索准确度

Rank-1识别率就是表示按照某种相似度匹配规则匹配后,第一次就能判断出正确的标签的测试数目与总的测试样本数目之比,Rank5识别率就是指有五次机会(选取匹配程度最大的五项)去判断是否有正确匹配。

如果一个样本按照匹配程度从大到小排列后,到排序结果的后面,才匹配到正确标签,把最应匹配的判别成最不应匹配的,这就说明分类器不太好。

举个例子来说,比如,我们训练了一个分类器,来识别五个物体,即1,2,3,4,5,他们属于3类即A,B,C。比如属于A类的物体1,经过分类器,得到属于A、B、C类的概率是80%,15%,5%,所以将物体1,判定为A类,物体1经过一次排序就被命中正确的类,所以我们引入Rank-1为100%,若物体2本来属于B类,被我们训练的分类器分类为A、B、C的概率分别为50%,40%,10%,所以被判定为A类,按照概率排序,如果有两次机会,才能命中,这就是Rank-2的含义。

综上五个物体,若果每个都能第一次命中,所以五个物体的Rank分别是 rank-1 100% rank-2 100% rank-3 100%

如果物体1,2为一次就命中,3,4为两次才能命中,5为三次命中,则为 rank-1 40% rank-2 80% rank-3 100%

这就是CMC曲线,而一次命中率越高,说明我们的分类器性能越好。

两者的差别:

假设有(a)(b)(c)三个分类器如上图,(a) (b) (c)的rank-1都为1,无法反应分类器的好坏。但是(a)的AP=(1/1+2/N)/2 = 0.5 + 1/N   (b)的AP =(1/1 + 2/2)/ 2=1   (c)的AP=(1/1+2/5)/2=0.7 可见(b)分类器的性能好

由上面这个例子我们可以看出,CMC曲线适合gallery中只有一个查询结果的情况。而对于gallery中有多个查询结果的情况,用mAP更为合适。

F-score:

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值