Ubuntu GCC切换 查看对应的版本gcc -vg++ -v进入到/usr/bin中进行处理cd /usr/binsudo rm -r gcc g++新建软连接sudo ln -s /usr/bin/gcc-指定版本 gccsudo ln -s /usr/bin/g++-指定版本g++完成
Conditional Structure Generation throughGraph Variational Generative Adversarial Nets 论文阅读 目标基于语义条件生成图(1)基于条件生成尽可能相似的图。(2)有条件的生成新的图。解决的问题(1)基于语义有条件的生成图(2)如何处理图在生成过程中的顺序的问题解决问题的方法(1)提出了一个图变分自编码对抗生成网络。本质是Graph+VAE+GAN的结构和方法。(2)通过对共轭潜在分布的变分推断,将结点编码分解为排列不变的图编码。共轭:共轭(conjugate)是贝叶斯方法中很常见的一个词,结合贝叶斯定理,我们可以将“共轭”理解为后验和先验是同一种分布。参考文
nn.Embedding的使用 nn.Embedding经常用到的参数是nn.Embedding(num_embeddings, embedding_dim)其中,num_embeddings代表字典中一共有多少个词语, embedding_dim代表你想要为每个词创建一个多少维的向量,这样在使用的时候,会为每一个特定的词语赋予一共向量。示例import torchfrom torch import nnembedding = nn.Embedding(5, 4) # 假定字典中只有5个词,词向量维度为4word
DYNAMIC GRAPH REPRESENTATION LEARNING VIAGRAPH TRANSFORMER NETWORKS 阅读笔记 Traget图学习的理论研究。Motivation在现实生活中,很多事物之间是有相互联系的,根据这种联系可以建立一个图结构。但是现实生活中的图结构往往不是固定的,是随着时间的变化而动态改变的,因此,需要设计一个动态的图的方法。Problem动态图的学习会面对两个问题,(1)对图信息非常敏感。(2)缺乏泛化能力。Solved(1)为了解决图信息的敏感问题,提出了一个基于动态图的transformer,依靠临时空间编码来捕获图的拓扑。(2)为了提升泛化能力,设计了一种互补的自监督
LPMNet: Latent Part Modification and Generation for 3D Point Clouds 阅读笔记 Target基于点云的三维形状的生成。Motivation基于部件的三维生成已经是一种非常常见的生成方法,这源自于,我们世界中的复杂物体都可以看作是由一些基本部件组合而成,但是之前的方法中,需要对每个部件进行感知,设计的网络非常复杂,这需要对物体进行分割等人工操作,而本篇文章提出了一种端到端的方法,利用一个单一的网络,对部件进行分块学习。Problem如何利用一个单一的网络,对物体进行分部件学习?同时还可以在特征空间中进行组合操作。Solve(1)加入segmentation m
Rethinking Graph Transformers with Spectral Attention 阅读笔记 NIPS 2021困难:难以定义正确的位置图网络(GNN)产生过度平滑的原因:图网络的消息传递框架使用了前面两个主要函数 Aggregate 和 Update,它们从邻居那里收集特征向量并将它们与节点自己的特征结合起来更新它们的表示。此操作的工作方式使交互节点(在此过程中)具有非常相似的表示。...
A Generalization of Transformer Networks to Graphs 论文阅读笔记 Task使用transformer去处理图结构数据。Motivation图数据拥有两个特性:(1)稀疏性。(2) 结点间有拓扑关系。这两个特性对于图来说非常重要,但是在利用transformer去处理图数据时,由于在任意两个结点之间建立了联系,因此可以说忽略了图的稀疏性和拓扑关系这两个特性,因此作者想设计一种基于图的transformer,在保留图的特性的时候,依旧能够利用transformer去处理。Method整个网络的结果如上图所示,其中图左边描述的是不加入边信息的transfor
Unconditional Scene Graph Generation 阅读笔记 Task无条件的场景图生成。之前的场景图生成的研究中,是基于条件生成的场景图,而本篇工作是根据一个随机的输入,产生一个完整的场景图。问题(1) 图的object的数量的多少是不一致的。(2) object之间的关系的种类是不平衡的。(3) object之间的关系是有向的。解决方法(1) 前人的工作大多是给一个假设,即设定object的数量是一致的,而本篇工作采用的是自回归的方法,利用自回归来解决数量不一致的问题。(2) object与object之间的关系和种类,作者利用了G
在pytorch中nn.Linear 和 nn.Embedding 的区别 转载一篇文章模型的第一层:详解torch.nn.Embedding和torch.nn.Linear_音程的博客-CSDN博客_embeding linear
EditVAE论文阅读笔记 Unsupervised Part-Aware Controllable 3D Point Cloud Shape Generation 是2021年10月放在arxiv上的一篇论文Task基于组件的形状的生成,使用无监督的方式Key Idea利用VAE作为学习框架,在隐空间中进行分解,以无监督的方式学习形状的各个组件之间的关系,达到结构感知的学习结果方法输入一个点云的形状,首先经过一个后验(Encoder),然后经过重参数化采样,得到一个全局的隐空间,经过一个线性映射,得到不同
Modeling Levels of Structural Detail in 3D Part Hierarchies阅读笔记 TASK基于组件的三维模型的生成Idea之前StructureNet(StructureNet读书笔记 - 知乎)将基于组件的建模推到了一个巅峰,但是也有一个缺陷,即在生成的过程中,如果想根据已经生成的部件去继续生成的时候,会遇到问题,之前已经生成的部件会被改变。这篇论文中,作者在生成的阶段,利用条件生成的方式,让StructureNet能够基于已经生成的部件去生成完整的部件。challenge(1)如果不从头开始重新生成整个层次结构,并且不能保证重新生成的结构的其余部分将完全忠
Do Transformers Really Perform Bad for Graph Representation 阅读笔记 Task利用transformer进行图预测,即给出一个图,预测出其类别,其中图由来表示,代表结点,代表边。在阅读这篇论文之前,回顾一下经典的GNN和Transformer。GNN一般的图神经网络通常通过聚合邻接结点的特征更新结点表达,称为AGGREGATE-COMBINE。公式如下所示:其中,l代表的是图卷积的层数,h代表的是结点在每一层的特征。一般聚合操作包括mean, max, sum。TransformerTransformer通过计算节点相似度对节点表示进行更新。 ..
A Deep Generative Network for Computer-Aided Design Models 阅读笔记 这一小段节选自这篇论文的introduction,是比较少见的在计算机科研论文中,使用了一定的修辞手法去表达的论文,因此记录一下:-)Task以序列化的方式,生成CAD三维模型。问题在做CAD模型的生成的时候,有一系列的步骤,每个步骤都有相应的参数控制,但是这些控制的参数有些是离散的值,有些是连续的值,这就给基于传统深度学习的几何建模方法带来了挑战。一般的深度学习建模方法不再适应。解决的方法(1)对CAD的建模command做了编码(2)利用transformer做...
Learning Deformable Kernels in 3D GraphConvolution Networks for Point Cloud Analysis 阅读笔记 Task定义一种在三维形状中,新的点云运算方法。问题(1) 三维点云是一种无序,无结构的三维形状表达方式,因此不能提供一种统一的运算方式。(2)之前的一些方法,在对三维点云进行一些操作,例如放缩和平移的时候,就会影响计算的效果。解决方法(1)利用一个可变形的3D核去学习3D点云的信息。(2)提出了一个基于图的最大池化的方法去处理不同的尺度信息。方法作者自定义了图卷积的感受野,即对于一个三维形状中的每一个点,作者固定了其周围的最近邻的M个点作为其感受野。此外,作..
ViTGAN: Training GANs with Vision Transformers阅读笔记 Task图像的生成Key idea利用transformer作为基本的计算单元,替代传统的CNN,同时基于GAN的基础架构,去完成图像的生成任务。面对的问题:(1) GAN的正则化方法与注意力机制的交互很差,导致训练中稳定性不足(2)在鉴别器训练的后期,对抗训练经常受到高方差梯度(或尖峰梯度)的阻碍。高方差梯度会在训练的时候导致震荡,非常影响训练的效果。解决的方法:(1) 在判别器中,研究者重新审视了自注意力的 Lipschitz 性质,在此基础上他们设计了一种加强了..
GAN 网络训练中,G_loss上升,D_loss下降 最近重写拾起了GAN网络,做layout的生成工作,但是在训练的过程中又出现了G和Dloss不按照正常的情况下降和上升:网上查找的原因是:种情况是判别器太强了,压制了生成器。查询资料后总结的方法1 提升G的学习率,降低D的学习率。2 G训练多次,D训练一次。3 使用一些更先进的GAN训练目标函数。参考资料:训练GAN时,遇到G_loss不断上升最后平稳,D_loss不断下降最后趋于0,这种情况应该如何调整? - 知乎...
A Hierarchical Approach for Unified and Controllable Multi-Category Object Generation 阅读理解 Task基于语义信息的图像生成Key idea利用粗到细的生成方式,先生成bouning-box的layout,再生成pixel-level,最后再给每一个bounding-box增添上颜色。现有的工作的问题(1)现有的方法一般只生成一类图像,例如鸟的图像,脸的图像等。(2)现有的方法需要生成背景作为上下文的引导偏执。(3)现有的方法的生成结果不能很好的用于下游任务。方法Pipeline如前文所描述的一样,文章的方法分成了几个阶段,首先,LabelMap–V.