中国大学MOOC
函数的定义
《集合论》
- 常见数集的集合
- 集合的表示方法:列举法和描述法
- 用描述法表示时候要有相当明确(清晰)的概念。
- 空集是任何元素的子集, 记 ∅ ∅
- 补集,都带“相当于XX集”来说,集合A相当于全集U 的补集 →CuA → C u A
- 直积(笛卡尔积)
- 符号 ∀ ∀ ∃ ∃ ⇒ ⇒
对于任意正数 M M ,都能在区间 中找到一个数,满足 x>M x > M |
∀M>0,∃x∈[a,+∞),满足x>M ∀ M > 0 , ∃ x ∈ [ a , + ∞ ) , 满 足 x > M |
映射
- 满射
- 单射
常量和变量
- 有些量虽然变化,但幅度比较小,可以当作常量处理
函数的定义域

即结果: Df D f = {x∣−1≤x<3,x≠0}⟺[−1,0)⋃(0,3) { x ∣ − 1 ≤ x < 3 , x ≠ 0 } ⟺ [ − 1 , 0 ) ⋃ ( 0 , 3 )
函数相同: 定义域相同 + 对应法则完全一致
例题:
- f(x)=|x| f ( x ) = | x | 和 φ(x)=x2−−√ φ ( x ) = x 2 两种相同。
- f(x)=(1−x)2−−−−−−−√φ(x)=1−x f ( x ) = ( 1 − x ) 2 φ ( x ) = 1 − x 定义域相同但对应法则不一样。
函数的性质
- 单调性
有界性
有界函数定义:存在 K1 K 1 、 K2 K 2 ,任意 ∀x∈I⟶K2<f(x)<K1 ∀ x ∈ I ⟶ K 2 < f ( x ) < K 1
- f(x) f ( x ) 在 I I 上有界 有正数 M M ,对 恒成立。其中 M=max{|K1|,|K2|} M = max { | K 1 | , | K 2 | }
例题:
1、判断 f(x)= sin x 的有界性 【M=1】
2、判断
f(x)=1x
f
(
x
)
=
1
x
在区间 ( 0, 1 ) 的有界性。
答:假定 定值 M M 为 在 (0, 1) 上任意处的值,此时 x=1M x = 1 M 。
令 x0=11+M x 0 = 1 1 + M
x0 x 0 肯定在 (0,1) 内,此时 f(x0)=1+M f ( x 0 ) = 1 + M >M 恒成立
即对 ∀M ∀ M ,都能找到 x0∈(0,1) x 0 ∈ ( 0 , 1 ) ,使 |f(x0)|=f(x0)>M | f ( x 0 ) | = f ( x 0 ) > M
∴f(x) ∴ f ( x ) 在 (0,1) 内无界。
奇偶性(必须是关于原点对称)
f(−x)=f(x)f(−x)=−f(x) f ( − x ) = f ( x ) f ( − x ) = − f ( x )周期性
f(x+T)=f(x) f ( x + T ) = f ( x ) 最小正周期函数不一定存在周期,比如常量函数 f(x)=C f ( x ) = C 和迪利克雷函数 f(x)={10x为无理数x为有理数 f ( x ) = { 1 x 为 无 理 数 0 x 为 有 理 数