前提:
构造最小生成树有许多算法,但大多数算法都利用了最小生成树的下列性质: 假设G=(V,E)是一个带权连通无向图,U是顶点集V的一个非空子集。若(u,v)是一条具有最小权值的边,其中u€U,v€V-U,则B存在一棵包含边(u,v)的最小生成树。
基于该性质的最小生成树算法主要有prim算法和kruskal算法,他们都基于贪心算法的策略。
下面介绍一个通用的最小生成树算法:
GENERIC_MST(G){
T=NULL;
while T未形成一棵生成树;
do 找到一条最小代价边(u,v) 并且加入T后不会产生回路;
T=T U (u,v);
Prim(普里姆)算法
步骤:
设G=(V,E)是连通权图,V={1,2,3….n};
构造G的最小生成树的Prim算法的基本思想是:首先设置S={1},然后,只要S是V的真子集,就如下的贪心选择:选取满足条件i属于S,j属于V-S。且c[i][j]最小的边,并将顶点j添加到S中。这个过程一直进行到S=V时为止。在这个过程中选取的所有边恰好构成G的一棵最小生成树:
按照上面的Prim算法的具体过程
1: 首先我们应该定义一个集合S用来存源点这里我们将起点定位1,所以开始时S={1};定义另一个集合B用来存集合V中除去集合S中的点之外的所有点;
2: 定义一个集合dis用来存集合S中的点能够到达集合B中的点的边长;初始时dis具体情况如下:
如上表所示,集合S到集合B之间距离最最近的点是顶点3;所以我们将顶点3放入集合S此时调整集合dis值如下表:
从表中我们可以看出,此时集合S中的点到集合B中的点距离最近的是边:dis(3,6),所以我们将顶点6放到集合S中,此时集合S中包含的点为S={1,3,6};再次调整集合dis,得下表:
从表中我们可以看出,此时集合S中的点到集合B中的点距离最近的是边是:dis(6,4),所以我们将顶点4放到集合S中;此时集合S中包含的点为S={1,3,6,4};再次调整集合dis,得下表:
从表中我们可以看出,此时集合S中的点到集合V-S中的点距离最近的边是:dis(3,2),所以我们将顶点2放到集合S中;此时集合S中包含的点为S={1,3,6,4,2};再次调整集合dis,得下表:
从表中我们可以看出,此时集合S中的点到集合V-S中的点距离最近的边是:dis(2,5),所以我们将顶点5放到集合S中;此时集合S中包含的点为S={1,3,6,4,2,5};已经包含了集合V中的所有元素,此时我们所得到的子图就是我们所要求解的最小生成树。如下图所示:
prim算法具体代码
//边
struct Edge{
int start;
int end;
int length;
};
//需要传入图邻接矩阵graph,点的个数length
Edge* Fun(int **graph,int length){
//length个点,(length-1)条边
int* V=(int*)calloc(length,sizeof(int));
Edge* E=(Edge*)malloc((length-1)*sizeof(Edge));
//先设起始点,置1说明入队列
V[0]=1;
for(int i=0;i<length-1;i++){
//寻找满足要求的最短边
for (int j=0,min=INT_MAX; j<length; j++) {
//判断当前点是否在点队列
if(V[j]>0){
for(int k=0;k<length;k++){
if(V[k]==0&&graph[j][k]<min&&graph[j][k]>0){
min=graph[j][k];
E[i].start=j;
E[i].end=k;
E[i].length=min;
}
}
}
}
//把新点加入队列
V[E[i].end]=1;
}
free(V);
return E;
}
Kruskal算法
步骤:
1).记Graph中有v个顶点。e个边
2).新建图Graphnew,Graphnew中拥有原图中同样的e个顶点,但没有边
3).将原图Graph中全部e个边按权值从小到大排序
4).循环:从权值最小的边開始遍历每条边 直至图Graph中全部的节点都在同一个连通分量 if 这条边连接的两个节点于图Graphnew中不在同一个连通分量中 增加这条边到图Graphnew中
例子举例
完整代码实现及测试数据:
#include "stdio.h"
#include "stdlib.h"
#define MAX_VERtEX_NUM 20
#define VertexType int
typedef struct edge{
VertexType initial;
VertexType end;
VertexType weight;
}edge[MAX_VERtEX_NUM];
//定义辅助数组
typedef struct {
VertexType value;//顶点数据
int sign;//每个顶点所属的集合
}assist[MAX_VERtEX_NUM];
assist assists;
//qsort排序函数中使用,使edges结构体中的边按照权值大小升序排序
int cmp(const void *a,const void*b){
return ((struct edge*)a)->weight-((struct edge*)b)->weight;
}
//初始化连通网
void CreateUDN(edge *edges,int *vexnum,int *arcnum){
printf("输入连通网的边数:\n");
scanf("%d %d",&(*vexnum),&(*arcnum));
printf("输入连通网的顶点:\n");
for (int i=0; i<(*vexnum); i++) {
scanf("%d",&(assists[i].value));
assists[i].sign=i;
}
printf("输入各边的起始点和终点及权重:\n");
for (int i=0 ; i<(*arcnum); i++) {
scanf("%d,%d,%d",&(*edges)[i].initial,&(*edges)[i].end,&(*edges)[i].weight);
}
}
//在assists数组中找到顶点point对应的位置下标
int Locatevex(int vexnum,int point){
for (int i=0; i<vexnum; i++) {
if (assists[i].value==point) {
return i;
}
}
return -1;
}
int main(){
int arcnum,vexnum;
edge edges;
CreateUDN(&edges,&vexnum,&arcnum);
//对连通网中的所有边进行升序排序,结果仍保存在edges数组中
qsort(edges, arcnum, sizeof(edges[0]), cmp);
//创建一个空的结构体数组,用于存放最小生成树
edge minTree;
//设置一个用于记录最小生成树中边的数量的常量
int num=0;
//遍历所有的边
for (int i=0; i<arcnum; i++) {
//找到边的起始顶点和结束顶点在数组assists中的位置
int initial=Locatevex(vexnum, edges[i].initial);
int end=Locatevex(vexnum, edges[i].end);
//如果顶点位置存在且顶点的标记不同,说明不在一个集合中,不会产生回路
if (initial!=-1&& end!=-1&&assists[initial].sign!=assists[end].sign) {
//记录该边,作为最小生成树的组成部分
minTree[num]=edges[i];
//计数+1
num++;
//将新加入生成树的顶点标记全不更改为一样的
for (int k=0; k<vexnum; k++) {
if (assists[k].sign==assists[end].sign) {
assists[k].sign=assists[initial].sign;
}
}
//如果选择的边的数量和顶点数相差1,证明最小生成树已经形成,退出循环
if (num==vexnum-1) {
break;
}
}
}
//输出语句
for (int i=0; i<vexnum-1; i++) {
printf("%d,%d\n",minTree[i].initial,minTree[i].end);
}
return 0;
}
测试数据输入连通网的边数: 6 10 输入连通网的顶点: 1 2 3 4 5 6 输入各边的起始点和终点及权重: 1,2,6 1,3,1 1,4,5 2,3,5 2,5,3 3,4,5 3,5,6 3,6,4 4,6,2 5,6,6 1,3 4,6 2,5 3,6 2,3