动态规划解决,dp[i][j] 表示 word1[1,i],word2[1,j]的edit distance
状态转换方程为:
word1[i-1]==word2[j-1] -> dp[i][j] = dp[i-1][j-1]
word1[i-1]!=word2[j-1] -> dp[i][j] = min(dp[i-1][j],dp[i][j-1])+1
class Solution {
public:
int minDistance(string word1, string word2) {
int m = word1.size(),n=word2.size();
vector<vector<int>> dp(m+1,vector<int>(n+1,0));
for(int i=1;i<=m;i++)
dp[i][0]=i;
for(int i=1;i<=n;i++)
dp[0][i]=i;
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
dp[i][j]=min(1+min(dp[i][j-1],(dp[i-1][j])),(word1[i-1]!=word2[j-1])+dp[i-1][j-1]);
}
}
return dp[m][n];
}
};