一、数据驱动测试和自动化的关系:
- 不是说做自动化测试,就要用数据驱动测试。
- 做自动化测试的前提下,做数据驱动测试,是优化代码的一种方式。
-做自动化测试的初衷,是要想好自动化脚本之后的维护。
二、学习目标:
- 常见自动化测试模式
- 数据驱动测试
– 测试数据决定测试行为以及最终的结果,是测试的基本形式,常用。 - 关键字驱动测试
– 对测试代码进行高度封装,测试人员直接通过简单词汇的函数调用就可实现自动化测试。 如,将登录测试的代码封装成login方法,用到时直接调用。或者,定义测试时所用到的名字,来决定测试的行为。 - 行为驱动测试
– 高度封装的同时,加入了对自然语言的支持,使测试人员通过自然语言描述实现自动化测试,依赖框架,普及程度不高。 举例:
Feature:Search in Sogou website
in order to Search inSougou website
As a visitor
We'll search the NBA best player
# 场景:搜索NBA的一个运动员
Scenario:Search NBA player
#测试代码如下:贴近自然语言的描述,其底层是有代码的,不能随意改变自然语言表述的
Given I have the English name "<search_name>"
When I search it in Sougou website
Then I see the entire name "<search_result>"
- 数据驱动测试特点
- 减少冗余代码,便于代码维护。
- 集中管理测试数据,方便测试维护。
- 便于测试框架扩展(模块化编程思维)。
- 数据驱动测试实现
- 编程语言:puthon3.x
- 编程工具:pycharm
- 用到的第三方库:requests、ddt、xlrd、xlutils
三、环境
1、安装python
- 注意添加环境变量
2、安装pycharm
3、安装第三方的库
- 3.1 安装ddt(data driver test)
– Python语言数据驱动测试用的库。
- 3.2 安装requests库
– 做接口自动化测试的库。
- 3.3 安装xlrd库
– 读excel文件的库
- 3.4 安装xlutils
– 向已存在的excel文件中追加内容的库。
四、创建工程编写代码
1、创建工程-选择解释器
解释器决定了下载的插件能不能用
也可以在项目建立后,确认解释器是否选择,如图:
2、写代码
-
demo_基本的代码.py
-- 缺陷:维护起来成本高,耗时耗力
import requests # 导入接口自动化的库
# 接口的地址
url = "http://172.31.191.129:8080/opencart/index.php?route=account/login"
# 入参,格式一般是字典
data = {
"email":"admin@admin.com",
"password":"123456"
}
# 发送请求
re = requests.post(url=url,data=data)
#print(re) # 打印结果:<Response [200]>,尖括号代表这是一个对象,其含义不只一个200,还有很多内容的
#print(re.text) # 查看响应的文本。
result = "注销退出" in re.text # 注销退出,作为一个断言
print(result)
# 密码错误
data = {
"email":"admin@admin.com",
"password":"12345"
}
re = requests.post(url=url,data=data)
result = "邮箱地址/电话号码或密码不匹配。" in re.text
print(result) # 打印结果:True
# 账号错误
data = {
"email":"admin@admin.co",
"password":"123456"
}
re = requests.post(url=url,data=data)
result = "邮箱地址/电话号码或密码不匹配。" in re.text
print(result) # 打印结果:True
# 密码为空
data = {
"email":"admin@admin.com",
"password":""
}
re = requests.post(url=url,data=data)
result = "邮箱地址/电话号码或密码不匹配。" in re.text
print(result) # 打印结果:True
# 账号为空
data = {
"email":"",
"password":"123456"
}
re = requests.post(url=url,data=data)
result = "邮箱地址/电话号码或密码不匹配。" in re.text
print(result) # 打印结果:False→原因是此功能在“账号为空、密码正确”时也能登录成功,是一个bug
# 账号,密码都为空
data = {
"email":"",
"password":""
}
re = requests.post(url=url,data=data)
result = "邮箱地址/电话号码或密码不匹配。" in re.text
print(result) # 打印结果:True
进阶:
-
demo2_基于unittest框架的简单数据驱动.py
-- 缺陷:不适合大数据量的测试,否则通篇都是数据
# 导入测试框架unittest(pytest比unittest更灵活、功能更强大)
# 测试框架,存在的意义:可以更加方便的管理测试代码。
import unittest
# 从ddt(data driver test)包导入相应内容
from ddt import ddt,data,unpack
import requests
# 加 @ddt 表示当前测试类要进行数据驱动测试,不加 @ddt 就没办法进行数据驱动测试了
@ddt
# 步骤1:
# 定义测试类,测试类要继承自unittest.TestCase类
# 定义的测试类Demo名,是自定义的
class Demo(unittest.TestCase):
# 步骤4:
# @data 表示当前这条测试用例需要用到的测试数据。
# @data([第一组数据],[第二组数据],[第三组数据],[第四组数据],[第五组数据]),入参和预期结果组成一组数据
# @data后面有几组测试数据,它对应的测试用例,就会循环执行多少次,每次取新的数据。
@data([{"email": "admin@admin.com","password": "123456"},"注销退出"],
[{"email": "admin@admin.com","password": "12345"},"邮箱地址/电话号码或密码不匹配。"],
[{"email": "admin@admin.co","password": "123456"},"邮箱地址/电话号码或密码不匹配。"],
[{"email": "admin@admin.com","password": ""},"邮箱地址/电话号码或密码不匹配。"],
[{"email": "","password": "123456"},"邮箱地址/电话号码或密码不匹配。"],
[{"email": "","password": ""},"邮箱地址/电话号码或密码不匹配。"])
# 要进行数据驱动,我们就要为测试用例定义形式参数,形参的个数要与每组测试数据中的元素个数一致。
# 执行测试的时候,测试数据会自动传递给对应的形式参数
# 步骤6:
# 将一组数据(列表,元组)拆分成单个元素,然后一一对应传递给形式参数。只拆分一次。
# 缺少@unpack的话,如此案例中,每组列表数据包含有入参和预期结果(多个值),不拆分这两个,会将它们全部传递给第一个形参,即value,进行传递(默认以逗号作为传递标准)。不符合要求,且会报错。
@unpack #步骤2:定义方法中的内容,可以先将“demo_基本的代码.py”中的这部分粘过来
# unittest框架中的测试用例方法,应该以test开头,后面的为自定义名。
def test_01_demo(self,value,pre_result): # 步骤5:数据的传递,方法中传参,定义形式参数。变量的个数取决于每组数据里元素的个数,有2个值,就定义2个形参
url = "http://172.31.191.129:8080/opencart/index.php?route=account/login"
# 步骤3:
# 让测试用例只有一条,但测试数据data不断变化,预期结果随之变化,去实现数据驱动,需要用到@data。删除此处的data
re = requests.post(url=url, data=value) # 步骤6:此处的变量value,作为数据内容,赋值给data
result = pre_result in re.text # 步骤6:此处的预期结果,换为形参pre_result
print(result)
# 打印结果:True True True True False True
if __name__=="__main__":
unittest.main()
进阶:
- demo3_将数据保存在文件中.py
步骤:
1. 本地新建.xls文件(新版本不支持.xlsx,需另存为.xls)
2. 一组一行的格式,准备测试数据,如data.xls:
3. 写一个能读取excel的文件excel_utils.py
# 步骤2:导入读excel的库xlrd
import xlrd
import os
# 步骤1:定义一个函数get_excel_data
def get_excel_data():
# 用xrld打开指定路径下的excel文件
wb = xlrd.open_workbook("data.xls")
# 选择excel下面相应的标签(告诉计算机选择的excel里的标签页)
sheet = wb.sheet_by_name("Sheet1")
# 动态获取当前标签页中数据一共多少行
num = sheet.nrows # sheet.row_values()是读取指定行的内容,如sheet.row_values(0),读取第一行的内容
# 步骤3:循环获取当前页签中所有的数据
# 定义一个空列表,用来装所有的测试数据。
row_data = [] # 空列表,用来装新数据
for i in range(0,num): # 序号:0至num
# 获取指定行号的数据
data = sheet.row_values(i)
# 将字符串类型的字典,转换成它本身的样子(字典)。
# 不转换的话,会将每一行数据都变成列表转换出来,字典多加了引号,与数据源要求不一致
data[0] = eval(data[0])
# 将取到的每行数据添加到列表中
row_data.append(data)
print(row_data) # 打印转换后的row_data
# 打印结果:一个二位列表:[[第一行],[第二行],[第三行],[第四行],[第五行]]
return row_data
# 如果代码不想让别人执行,就可以把其放在if __name__=="__main__"下面
if __name__=="__main__":
get_excel_data()
4. 调试:demo3_将数据保存在文件中.py
# 步骤1:可以先把“demo2_基于unittest框架的简单数据驱动.py”中的代码拷贝过来
import unittest
from ddt import ddt,data,unpack
import requests
# 步骤3:
# 导入写好的excel_utils.py中的get_excel_data方法(函数)
from excel_utils import get_excel_data
@ddt
class Demo(unittest.TestCase):
# 步骤6:理解下述内容
# get_excel_data() 相当于 [[第一行],[第二行],[第三行],[第四行],[第五行]]这个二位列表
# @unpack 解包后 相当于 [第一行],[第二行],[第三行],[第四行],[第五行],不能直接使用,参考demo2_基于unittest框架的简单数据驱动.py
# 所以需要再次解包
# *get_excel_data() 调用函数时,函数名前加*,表示对结果进行一次解包。
# 配合@unpack 就可以进行两次解包
@data(*get_excel_data()) # 步骤2:因为有excel数据,此处data中的数据删除变为@data();步骤4:将excel数据传入
@unpack
def test_01_demo(self,value,pre_result):
url = "http://172.31.191.129:8080/opencart/index.php?route=account/login"
re = requests.post(url=url, data=value)
result = pre_result in re.text
print(result) # 打印结果:True True True True False True
if __name__=="__main__":
unittest.main()
# 这种类型也适用于selenium的表单类测试,不同的表单创建不同的标签
进阶:
- demo4_从excel中读取所有数据.py
(更偏向于关键字驱动)
步骤:
1. 本地新建.xls文件(新版本不支持.xlsx,需另存为.xls)
2. 第一行标题,其他数据一组一行的格式,准备测试数据,列名根据需要自定义,如data2.xls:
其中类似id的,设置成了文本格式,以免运行时显示.00这样的数。
在excel中定义好名称的原因是,简化代码,使测试数据直接在excel中维护。
3. 写一个能读取excel的文件excel_utils.py
# 步骤2:导入读excel的库xlrd
import xlrd
from xlutils import copy
import os
# 步骤1:定义一个函数get_excel_data2
def get_excel_data2():
wb = xlrd.open_workbook("data2.xls")
sheet = wb.sheet_by_name("Sheet1")
num = sheet.nrows
row_data = []
# 因为第一行是标题内容,要跳过,所以取数据要从第2行起,即序号从1开始
for i in range(1, num):
data = sheet.row_values(i)
data[4] = eval(data[4])
row_data.append(data)
print(row_data)
return row_data
if __name__=="__main__":
get_excel_data2()
4. 调试:demo4_从excel中读取所有数据.py
import unittest
from ddt import ddt,data,unpack
import requests
from excel_utils import get_excel_data2
@ddt
class Demo(unittest.TestCase):
@data(*get_excel_data2()) # 步骤1:写入数据,形参
@unpack
def test_01_demo(self,id,name,url,type,data,pre_result,result): # 步骤2:传参。data2.excel中有多少标题,这里必须一致。如果只要一部分,需要将get_excel_data2()函数中追加列表后,定义、生成需要的一个新列表
# 步骤3:此处原先的url不需要了,删除即可。直接从文档data2.xls读即可。
re = requests.post(url=url, data=data)
result = pre_result in re.text
print(result) # 运行结果 True True True True False True
if __name__=="__main__":
unittest.main()
以上示例中只提到post请求(re = requests.post(url=url, data=data)),如果还包含get请求的数据呢?
进阶:
- demo5_用自己封装的请求自适应数据测试
步骤:
1. 本地新建.xls文件(新版本不支持.xlsx,需另存为.xls)
2. 一组一行的格式,准备测试数据,列名根据需要自定义,如data3.xls:
3. 需要将get、post请求做一定的封装,能够自适应get和post,request.py
# 步骤1:
import requests
def send_request():
requests.post()
requests.get()
# 步骤2:
import requests
def send_request(type):
if type=="post":
requests.post()
elif type=="get":
requests.get()
# 步骤3:
import requests
# 不能只传type,其他值也要传进来
def send_request(url,data,type):
if type=="post":
# post请求可以传递两种数据
requests.post(url=url,data=data) # 有时传递的data,在excel中增加一列data_type(data[字典]或json[字符串])
requests.post(url=url,json=data) # 有时传递的json
elif type=="get":
requests.get(url=url,params=data)
# 步骤4:
import requests
def send_request(url,data,data_type,type):
if type=="post":
if data_type=="data":
requests.post(url=url,data=data)
elif data_type == "json":
requests.post(url=url,json=data)
elif type=="get":
requests.get(url=url,params=data)
# 步骤5:
# 有时请求可能会带一些其他消息,如header、cookies等,可将**kwargs带上,代表接收一个字典
import requests
def send_request(url,data,data_type,type,**kwargs):
if type=="post":
if data_type=="data":
requests.post(url=url,data=data,**kwargs)
elif data_type == "json":
requests.post(url=url,json=data,**kwargs)
elif type=="get":
requests.get(url=url,params=data,**kwargs)
# 步骤6:
# 最终需要将请求的响应内容拿出去,所以要将结果返回,加return
import requests
def send_request(url,data,data_type,type,**kwargs):
if type=="post":
if data_type=="data":
return requests.post(url=url,data=data,**kwargs)
elif data_type == "json":
return requests.post(url=url,json=data,**kwargs)
elif type=="get":
return requests.get(url=url,params=data,**kwargs)
4. 写一个能读取excel的文件excel_utils.py
import xlrd
import xlutils
def get_excel_data3():
wb = xlrd.open_workbook("data3.xls")
sheet = wb.sheet_by_name("Sheet1")
num = sheet.nrows
row_data = []
# 因为第一行是标题内容,要跳过,所以序号从1开始
for i in range(1, num):
data = sheet.row_values(i)
data[5] = eval(data[5])
row_data.append(data)
print(row_data)
return row_data
5. demo5_用自己封装的请求自适应数据测试.py
import unittest
from ddt import ddt,data,unpack
import requests
from excel_utils import get_excel_data3
from request import send_request
@ddt
class Demo(unittest.TestCase):
@data(*get_excel_data3())
@unpack
def test_01_demo(self,id,name,url,type,data_type,data,pre_result,result):
# 不用之前的re = requests.post(url=url,data=data),用自己封装的请求调用
re = send_request(url=url,type=type,data_type=data_type,data=data)
result = pre_result in re.text
print(result) # 打印结果:True True True True False True
if __name__=="__main__":
unittest.main()
6. 以上代码执行后,excel中最后一列result为空,需要在excel_utils中多一个写测试数据的动作:
import xlrd
from xlutils import copy
import os
def get_excel_data3():
wb = xlrd.open_workbook("data3.xls")
sheet = wb.sheet_by_name("Sheet1")
num = sheet.nrows
row_data = []
# 因为第一行是标题内容,要跳过,所以序号从1开始
for i in range(1, num):
data = sheet.row_values(i)
data[5] = eval(data[5])
row_data.append(data)
print(row_data)
return row_data
# 将最终的测试结果数据,写入excel中。思路:最终结果出来后,复制一份原始的excel文件,写入全部数据后,删除旧的excel表
def write_result(id,result):
# 打开原始数据文件
books = xlrd.open_workbook("data3.xls")
# 复制数据的副本
wb = copy.copy(books)
# 选第一个标签页
sheet = wb.get_sheet(0)
# 测试数据应该与原始行一一对应,所以前面的id(文本格式)作用就体现出来了
# 把文件中字符串格式的id转换成整数
id = eval(id)
# 向指定坐标的单元格写入测试数据。
sheet.write(id,7,result) # id:行;7:列
# 移除原始文件(操作之前,最好备份一份原始测试数据)
os.remove("data3.xls")
# 保存新文件
wb.save("data3.xls")
# 如果代码不想让别人执行,就可以把其放在if __name__=="__main__"下面
if __name__=="__main__":
get_excel_data2()
7. demo6_测试完毕将结果写入到文件中.py,运行后可查看新的data3.xls文件中result列的更新效果。(这种写法不会把错误日志写进来,如果需要,可以结合生成.html格式的测试报告。)
import unittest
from ddt import ddt,data,unpack
from excel_utils import get_excel_data3
from request import send_request
# 步骤1:导入自写模块的函数
from excel_utils import write_result
@ddt
class Demo(unittest.TestCase):
@data(*get_excel_data3())
@unpack
def test_01_demo(self,id,name,url,type,data_type,data,pre_result,result):
re = send_request(url=url,type=type,data_type=data_type,data=data)
result = pre_result in re.text
write_result(id=id,result=result)
if __name__=="__main__":
unittest.main()
*如果有的接口需要其他接口返回的数据,比如需要的是前一个接口的token、cookies等,
*思路如下:
*把所有的需要的上一接口的数据,单独放到一个sheet页里,如果需要用到某些请求的这些数据,在上一个sheet里添加判断。举例如下:
*需要上一接口产生的特定数据的,填Y,不需要的填N。如:get-header、set-header。
*值为Y的时候,则向指定的sheet页中写入header值。
本次举例测试项目结构: