【LeetCode刷题笔记】动态规划

【LeetCode刷题笔记】动态规划

动态规划

动态规划的三个性质:

  1. 最优化原理(最优子结构性质):一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。
  2. 无后效性:将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性。
  3. 子问题的重叠性:如果有大量的重叠子问题,我们可以用空间将这些子问题的解存储下来,避免重复求解相同的子问题,从而提升效率。本质上,动态规划是一种以空间换时间的技术。

总结:动态规划是一种解决最优化问题的分治思想,将复杂的问题分解成若干个子问题,最优策略的子策略一定是最优的,之后的决策只与当前状态有关,通过记录重复子问题的解达到空间换时间的目的。

1 爬楼梯(70)

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
1 <= n <= 45

1.1 分析

设n阶楼梯的爬楼梯方法有f(n)种,
n=1,f(1)=1
n=2,f(2)=2
n=k,f(k)=f(k-1)+f(k-2) (k>=3)
这是一个斐波那契数列。

1.2 代码

1.2.1 暴力递归

纯递归的方法很简单:

class Solution {
public:
    int climbStairs(int n) {
        if(n==1||n==2)
            return n;
        else
            return climbStairs(n-1)+climbStairs(n-2);
    }
};

没有逻辑错误,但时间复杂度是O(2^n),当n足够大时,会产生栈溢出。

1.2.2 动态规划

记录每个f(k)的值:

class Solution {
public:
    int climbStairs(int n) {
        if(n==1)
        return 1;
        std::vector<int> resolution(n, 0);
        resolution[0] = 1;
        resolution[1] = 2;
        for(int i=2; i<n; i++){
            resolution[i] = resolution[i-1]+resolution[i-2];
        }
        return resolution[n-1];
    }
};

时间复杂度O(n),空间复杂度O(n)。
记录f(k-1)和f(k-2)的值:

class Solution {
public:
    int climbStairs(int n) {
        if(n==1||n==2)
            return n;
        else{
            int f1 = 1;
            int f2 = 2;
            int result;
            for(int i=3;i<=n;i++){
                result = f1+f2;
                f1 = f2;
                f2 = result;
            }
            return result;
        }
    }
};

时间复杂度O(n),空间复杂度O(1)。

1.2.3 排列组合

若n为偶数,最少步数的爬楼梯方法为n/2,若n为奇数,最少步数的爬楼梯方法为(n+1)/2,最多步数的爬楼梯方法都是n。
设步数为m的爬楼梯方法中,其中x步是走二阶的,则(m-x)步是走一阶的步数,2x+m-x = m+x=n,x = n-m。
计算组合数C(m, n-m),其中最小步数<=m<=n。

组合数计算实现:
组合数计算公式:
C(a,b)=a!/(b!(a-b)!)
组合恒等式:
C(a,b)=C(a-1,b)+C(a-1,b-1)
原代码:

class Solution {
public:
    int combination(int a, int b){
        long long c[a+1][a+1];
        for(int i=0;i<=a;i++)
        {
            for(int j=0;j<=i;j++){
                if(j==0||j==i){
                    c[i][j]=1;
                }
                else{
                    c[i][j]=c[i-1][j-1]+c[i-1][j];
                }
            }
        }
        return c[a][b];
    }
    int climbStairs(int n) {
        int min;
        if(n%2==1){
            min = (n+1)/2;
        }
        else{
            min = n/2;
        }
        int result = 0;
        for(int i=min; i<=n; i++){
            result += combination(i,n-i);
        }
        return result;
    }
};

这个做法属于是吃力不讨好了,O(n^3)的时间复杂度,n比较大时组合数太大只能用长整型,不过组合数的计算还可以优化,不用全算出来,仅作参考。

1.3官方题解学习

矩阵快速幂:
在这里插入图片描述学习点:1、将问题转化为求矩阵n次方的问题,然后用快速幂求解。
2、对于齐次线性递推式,可以把数列的递推关系转化为矩阵的递推关系。
对于部分非齐次线性递推式,可以凑成齐次线性递推式。

留的思考题:
1.把 f(x)=2f(x−1)+3f(x−2)+4c 化成齐次线性递推
f(x)+c = 2(f(x-1)+c)+3(f(x-2)+c)
2.如果一个非齐次线性递推可以转化成齐次线性递推,那么一般方法是什么
将自变量不同幂次的系数,根据f(x-i)前的系数按比例配平。

  • 42
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值