离线算法即将所有询问一并读入,同时处理,同时回答,只要注意保存每个询问的时间顺序即可。
在线算法即对于每个询问及时处理,及时回答。
对于处理最近公共祖先的算法有很多种,tarjan算法,倍增算法,或者将lca转化成RMQ问题。 其中tarjan算法属于离线算法。
个人认为tarjan算法巧妙地利用了dfs的深度优先搜索的特性,对于一棵树的节点进行dfs遍历
我们用黑,白,灰三种颜色来表示节点的状态:
白色: 未访问到该节点。
灰色: 该节点已访问但已该节点为根的子树还没有完成访问 。
黑色: 该节点以及以该节点为根的子树也已完成访问。
如图 当前访问到红色节点。
可见,所有的灰色节点都是当前访问点的祖先。而与当前点有关的最近公共祖先必然存在于这些灰色节点中,tarjan算法的具体算法步骤如下:
<1> 遍历以某节点为根的子树。
<2> 当该节点的儿子节点变为黑色时,将儿子节点所在的集合并入该节点所在的集合。
<3> 当该节点变为黑色时,处理与该节点有关的询问。
<4> 返回上一层。
设该节点为l , 询问的点对为l,r , 我们讨论一下r的颜色
若r此时的颜色为白色,则此询问当前还不能回答,
若r此时的颜色为灰色,依据之前所说,r一定是l的祖先,所以该询问的答案便是 r (此时r是r所在集合的root)
若r此时的颜色为黑色,若r不为l的子孙,r所在集合的root一定为一个灰色节点,而此灰色节点也一定是l的祖先,此节点便是最近公共祖先 ; 若r是l的子孙,该询问已经回答过,并且此时r所在集合的root是l , 答案依然正确。
附上tarjan算法的核心代码
1: void dfs(int i)
2: {
3: f[i]=i ; vis[i]=1;
4: for (int j=ad[i]; j; j=pre[j])
5: if (!vis[v[j]])
6: {
7: dfs(v[j]);
8: f[v[j]]= i ;
9: }
10: for (int j=head[i]; j ; j=link[j])
11: if (vis[next[j]])
12: {
13: ans[pos[j]] =find(next[j]);
14: }
15: }