先附上链接(吃水不忘挖井人):http://blog.csdn.net/acdreamers/article/details/16905653
题目大意:
求无根树的重心(质心):对于一棵有n个节点的无根树,找到一个点,使得把树变成以该结点为根的有根树时,最大子树的结点数最小,这个点就是该无根树的节点;
题目就是让你求删掉节点的idex,以及最大子树的节点个数,然后如果最大子树的节点个数相同的话,就输出最小的idex;
基本思路:
树形dp,说白了就是dfs(这个怎么什么地方都要用),然后我参照的这里用了邻接表,看了这个人的程序感觉今天才真正理解邻接表,以前都是强记然后做题的时候把板子背出来,哈哈,以后就不用了;
代码如下(略有改动):
#include<iostream>
#include<sstream>
#include<iomanip>
#include<algorithm>
#include<string>
#include<vector>
#include<queue>
#include<list>
#include<stack>
#include<map>
#include<set>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
using namespace std;
#define rep(a,b,c) for(int a=b;a<=c;a++)
#define drep(a,b,c) for(int a=b;a>=c;a--)
#define pub push_back
#define pob pop_back
#define mkp make_pair
typedef long long ll;
typedef long double lb;
typedef pair<int,int> pii;
const int inf= 0x3f3f3f3f;
const double eps= 1e-8;
const int maxn = 20000+10;
const int mod = 1000000000+7;
const int dx[]={0,0,-1,1};
const int dy[]={1,-1,0,0};
//ios::sync_with_stdio(false);
//一劳永逸,写完一次这么多东西,以后做题经常用到,就不用每次都重复的敲,而且防止编译错误;
int res,sz;//用来记录删除的节点的idex和最小的节点数;
int n,cnt;
int head[maxn];//邻接表的表头,初始化委-1;
struct Node
{
int to,next;
}node[maxn*2];
bool vis[maxn];
int son[maxn];//子节点的个数;
void init()
{
res=sz=inf;
cnt=0;
memset(vis,false,sizeof(vis));
memset(head,-1,sizeof(head));
}
void add(int u,int v)//邻接表核心,就是相当于每次在当前节点的前面再加一个节点,然后用的时候从头上撸回来,知道撸到-1结束;
{
node[cnt].to=v;
node[cnt].next=head[u];
head[u]=cnt++;
}
void dfs(int x)
{
vis[x]=1;
son[x]=0;
int t=-1;
for(int i=head[x];i!=-1;i=node[i].next)
{
int to=node[i].to;
if(vis[to]) continue;
dfs(to);
son[x]+=son[to]+1;
t=max(t,son[to]+1);//对于当前的点的子树的最大的节点;
}
t=max(t,n-son[x]-1);
if(t<sz||(t==sz&&x<res))
{
res=x;
sz=t;
}
}
//写dfs的时候考虑的是一般的子问题,这样写出来的函数才具有普遍性,才是正确的递归
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
init();
scanf("%d",&n);
rep(i,1,n-1)
{
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
}
dfs(1);
printf("%d %d\n",res,sz);
}
return 0;
}