统计学习又称统计机器学习或机器学习,是基于数据构建概率统计模型从而对数据进行预测与分析的一类方法。通常如果一个系统能够通过执行某些步骤而实现自身性能上的改进,我们就称该过程为学习。而机器学习的目的就在于让计算机系统能够在数据之上结合统计方法实现系统表现上的提升。《统计学习理论与方法(R语言版)》(2020年5月出版)一书(已收入清华大学出版社人工智能科学系列)内容涵盖了各种流行的机器学习技术,系统而精炼地解释了它们背后的基本原理。
如果你对博主已经出版的图书感兴趣,可以在QQ群(155911675)中联系店小二以优惠价购买。所有图书都是出版社赠送给作者的样书,全新正版。需要入群购书的朋友,入群问题答案请直接填写“购书”。或者,你也可以从任意电商网站上购买:
本书从统计学观点出发,以数理统计为基础,全面系统地介绍了统计机器学习的主要方法。内容涉及回归(线性回归、多项式回归、非线性回归、岭回归,以及LASSO等)、分类(感知机、逻辑回归、朴素贝叶斯、决策树、支持向量机、人工神经网络等)、聚类(K均值、EM算法、密度聚类等)、蒙特卡洛采样(拒绝采样、自适应拒绝采样、重要性采样、吉布斯采样和马尔科夫链蒙特卡洛等)、降维与流形学习(SVD、PCA和MDS等),以及概率图模型基础等话题。此外,为方便读者自学,本书还扼要地介绍了机器学习中所必备的数学知识(包括概率论与数理统计、凸优化及泛函分析基础等)。
本书主要涉及(但不限于)的内容有:
- 概率与数理统计基础,其中统计分析方法涉及参数估计、假设检验、极大似然法、非参数检验(含列联分析、符号检验、符号秩检验、秩和检验等)、方差分析方法等。
- 回归方法,包括线性回归、多元回归、多项式回归、非线性回归(含倒数模型、对数模型等)、岭回归,以及LASSO等。
- 监督学习与分类方法,包括感知机、逻辑回归(含最大熵模型)、朴素贝叶斯、决策树(