有限差分法求解偏微分方程

自然科学与工程技术中种种运动发展过程与平衡现象各自遵守一定的规律。这些规律的定量表述一般地呈现为关于含有未知函数及其导数的方程。我们将只含有未知多元函数及其偏导数的方程,称之为偏微分方程。初始条件和边界条件称为定解条件,未附加定解条件的偏微分方程称为泛定方程。对于一个具体的问题,定解条件与泛定方程总是同时提出。定解条件与泛定方程作为一个整体,称为定解问题。

在介绍有限差分法求解偏微分方程的过程中,我们会用到Jacobi迭代法与Gauss-Seidel迭代法的相关内容,如果读者对此不甚了解,可以参阅下文:

欢迎关注白马负金羁的博客 http://blog.csdn.net/baimafujinji,为保证公式、图表得以正确显示,强烈建议你从该地址上查看原版博文。本博客主要关注方向包括:数字图像处理、算法设计与分析、数据结构、机器学习、数据挖掘、统计分析方法、自然语言处理。


椭圆方程

由于大多数工程问题都是二维问题,所以得到的微分方程一般都是偏微分方程,对于一维问题得到的是常微分方程,解法与偏微分方程类似,故为了不是一般性,这里只讨论偏微分方程。由于工程中高阶偏微分较少出现,所以本文仅仅给出二阶偏微分方程的一般形式,对于高阶的偏微分,可进行类似地推广。二阶偏微分方程的一般形式如下:

©️2020 CSDN 皮肤主题: 精致技术 设计师: CSDN官方博客 返回首页
实付19.90元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值