一次非常有意思的 SQL 优化经历

我用的数据库是mysql5.6,下面简单的介绍下场景

 

课程表

 

create table Course(

c_id int PRIMARY KEY,

name varchar(10)

)

 

数据100条

 

学生表:

 

create table Student(

id int PRIMARY KEY,

name varchar(10)

)

 

数据70000条

 

学生成绩表SC

 

CREATE table SC(

sc_id int PRIMARY KEY,

s_id int,

c_id int,

score int

)

 

数据70w条

 

查询目的:

 

查找语文考100分的考生

 

查询语句:

 

select s.* from Student s where s.s_id in (select s_id from SC sc where sc.c_id = 0 and sc.score = 100 )

 

执行时间:30248.271s

 

晕,为什么这么慢,先来查看下查询计划:

 

EXPLAIN

select s.* from Student s where s.s_id in (select s_id from SC sc where sc.c_id = 0 and sc.score = 100 )

 

 

发现没有用到索引,type全是ALL,那么首先想到的就是建立一个索引,建立索引的字段当然是在where条件的字段。


先给sc表的c_id和score建个索引

 

CREATE index sc_c_id_index on SC(c_id);

CREATE index sc_score_index on SC(score);

 

再次执行上述查询语句,时间为: 1.054s


快了3w多倍,大大缩短了查询时间,看来索引能极大程度的提高查询效率,建索引很有必要,很多时候都忘记建


索引了,数据量小的的时候压根没感觉,这优化的感觉挺爽。


但是1s的时间还是太长了,还能进行优化吗,仔细看执行计划:

 

 

查看优化后的sql:

 

SELECT

`YSB`.`s`.`s_id` AS `s_id`,

`YSB`.`s`.`name` AS `name`

FROM

`YSB`.`Student` `s`

WHERE

< in_optimizer > (

`YSB`.`s`.`s_id` ,< EXISTS > (

SELECT

1

FROM

`YSB`.`SC` `sc`

WHERE

(

(`YSB`.`sc`.`c_id` = 0)

AND (`YSB`.`sc`.`score` = 100)

AND (

< CACHE > (`YSB`.`s`.`s_id`) = `YSB`.`sc`.`s_id`

)

)

)

)

 

补充:这里有网友问怎么查看优化后的语句


方法如下:


在命令窗口执行

 

 

有type=all


按照我之前的想法,该sql的执行的顺序应该是先执行子查询

 

select s_id from SC sc where sc.c_id = 0 and sc.score = 100

 

耗时:0.001s

 

得到如下结果:

 

 

然后再执行

 

select s.* from Student s where s.s_id in(7,29,5000)

 

耗时:0.001s

 

这样就是相当快了啊,Mysql竟然不是先执行里层的查询,而是将sql优化成了exists子句,并出现了EPENDENT SUBQUERY,mysql是先执行外层查询,再执行里层的查询,这样就要循环70007*11=770077次。

 

那么改用连接查询呢?

 

SELECT s.* from

Student s

INNER JOIN SC sc

on sc.s_id = s.s_id

where sc.c_id=0 and sc.score=100

 

这里为了重新分析连接查询的情况,先暂时删除索引sc_c_id_index,sc_score_index


执行时间是:0.057s


效率有所提高,看看执行计划:

 

 

这里有连表的情况出现,我猜想是不是要给sc表的s_id建立个索引

 

CREATE index sc_s_id_index on SC(s_id);

show index from SC

 

 

在执行连接查询


时间: 1.076s,竟然时间还变长了,什么原因?查看执行计划:

 

 

优化后的查询语句为:

 

SELECT

`YSB`.`s`.`s_id` AS `s_id`,

`YSB`.`s`.`name` AS `name`

FROM

`YSB`.`Student` `s`

JOIN `YSB`.`SC` `sc`

WHERE

(

(

`YSB`.`sc`.`s_id` = `YSB`.`s`.`s_id`

)

AND (`YSB`.`sc`.`score` = 100)

AND (`YSB`.`sc`.`c_id` = 0)

)

 

貌似是先做的连接查询,再进行的where条件过滤


回到前面的执行计划:

 

 

这里是先做的where条件过滤,再做连表,执行计划还不是固定的,那么我们先看下标准的sql执行顺序:


 

正常情况下是先join再where过滤,但是我们这里的情况,如果先join,将会有70w条数据发送join做操,因此先执行where


过滤是明智方案,现在为了排除mysql的查询优化,我自己写一条优化后的sql

 

SELECT

s.*

FROM

(

SELECT

*

FROM

SC sc

WHERE

sc.c_id = 0

AND sc.score = 100

) t

INNER JOIN Student s ON t.s_id = s.s_id

 

即先执行sc表的过滤,再进行表连接,执行时间为:0.054s


和之前没有建s_id索引的时间差不多


查看执行计划:

 

 

先提取sc再连表,这样效率就高多了,现在的问题是提取sc的时候出现了扫描表,那么现在可以明确需要建立相关索引

 

CREATE index sc_c_id_index on SC(c_id);

CREATE index sc_score_index on SC(score);

 

再执行查询:

 

SELECT

s.*

FROM

(

SELECT

*

FROM

SC sc

WHERE

sc.c_id = 0

AND sc.score = 100

) t

INNER JOIN Student s ON t.s_id = s.s_id

 

执行时间为:0.001s,这个时间相当靠谱,快了50倍


执行计划:

 

 

我们会看到,先提取sc,再连表,都用到了索引。


那么再来执行下sql

 

SELECT s.* from

Student s

INNER JOIN SC sc

on sc.s_id = s.s_id

where sc.c_id=0 and sc.score=100

 

执行时间0.001s


执行计划:

 

 

这里是mysql进行了查询语句优化,先执行了where过滤,再执行连接操作,且都用到了索引。

 

总结:


1.mysql嵌套子查询效率确实比较低


2.可以将其优化成连接查询


3.连接表时,可以先用where条件对表进行过滤,然后做表连接(虽然mysql会对连表语句做优化)


4.建立合适的索引


5.学会分析sql执行计划,mysql会对sql进行优化,所以分析执行计划很重要

 

索引优化

 

上面讲到子查询的优化,以及如何建立索引,而且在多个字段索引时,分别对字段建立了单个索引

 

后面发现其实建立联合索引效率会更高,尤其是在数据量较大,单个列区分度不高的情况下。

 

单列索引

 

查询语句如下:

 

select * from user_test_copy where sex = 2 and type = 2 and age = 10

 

索引:

 

CREATE index user_test_index_sex on user_test_copy(sex);

CREATE index user_test_index_type on user_test_copy(type);

CREATE index user_test_index_age on user_test_copy(age);

 

分别对sex,type,age字段做了索引,数据量为300w,查询时间:0.415s

 

执行计划:

 

 

发现type=index_merge

 

这是mysql对多个单列索引的优化,对结果集采用intersect并集操作

 

多列索引

 

我们可以在这3个列上建立多列索引,将表copy一份以便做测试

 

create index user_test_index_sex_type_age on user_test(sex,type,age);

 

查询语句:

 

select * from user_test where sex = 2 and type = 2 and age = 10

 

执行时间:0.032s,快了10多倍,且多列索引的区分度越高,提高的速度也越多

 

执行计划:

 

 

最左前缀

 

多列索引还有最左前缀的特性:

 

执行一下语句:

 

select * from user_test where sex = 2

select * from user_test where sex = 2 and type = 2

select * from user_test where sex = 2 and age = 10

 

都会使用到索引,即索引的第一个字段sex要出现在where条件中

 

索引覆盖

 

就是查询的列都建立了索引,这样在获取结果集的时候不用再去磁盘获取其它列的数据,直接返回索引数据即可

 

如:

 

select sex,type,age from user_test where sex = 2 and type = 2 and age = 10

 

 

执行时间:0.003s

 

要比取所有字段快的多

 

排序

 

select * from user_test where sex = 2 and type = 2 ORDER BY user_name

 

时间:0.139s

 

在排序字段上建立索引会提高排序的效率

 

create index user_name_index on user_test(user_name)

 

最后附上一些sql调优的总结,以后有时间再深入研究

 

1. 列类型尽量定义成数值类型,且长度尽可能短,如主键和外键,类型字段等等

 

2. 建立单列索引

 

3. 根据需要建立多列联合索引

 

当单个列过滤之后还有很多数据,那么索引的效率将会比较低,即列的区分度较低,

 

那么如果在多个列上建立索引,那么多个列的区分度就大多了,将会有显著的效率提高。

 

4. 根据业务场景建立覆盖索引

 

只查询业务需要的字段,如果这些字段被索引覆盖,将极大的提高查询效率

 

5. 多表连接的字段上需要建立索引

 

这样可以极大的提高表连接的效率

 

6. where条件字段上需要建立索引

 

7. 排序字段上需要建立索引

 

8. 分组字段上需要建立索引

 

9. Where条件上不要使用运算函数,以免索引失效

 

参考文章

 

http://www.cnblogs.com/linfangshuhellowored/p/4430293.html

 

慢sql查询

 

http://tech.meituan.com/mysql-index.html

 

笛卡尔乘积

 

http://www.cnblogs.com/Toolo/p/3634563.html

 

sql优化

 

http://www.cnblogs.com/mliang/p/3637937.html

 

http://www.cnblogs.com/xwdreamer/archive/2012/07/19/2599494.html

 

执行计划参考:

 

http://www.cnblogs.com/ggjucheng/archive/2012/11/11/2765237.html

转载于:https://www.cnblogs.com/zhangxiaolei521/p/6066672.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值