要完成读取彩色图像,并将其转换为灰度图像并增加亮度。主要通过使用了Python的Pillow库(PIL
)和NumPy库来处理图像。它读取一个彩色图像文件,将其转换为灰度图像,并增加亮度。
1、导入需要的库
import numpy as np
from PIL import Image
这里导入了NumPy库用于数值计算,以及Pillow库用于图像处理。
Pillow(PIL Fork)是一个Python图像处理库,它提供了广泛的文件格式支持、强大的图像处理能力和效果处理功能。
- 理解模式:我们需要熟悉不同的图像模式对于处理图像至关重要,因为不同的模式影响图像处理的方式和结果。
- 数组操作:同时掌握如何将图像转换为数组和从数组创建图像,这使得可以使用NumPy等库进行高效的数值计算。
- 增强与滤镜:使用Pillow提供的工具来增强图像和应用滤镜效果,这对于图像预处理和视觉效果的创造很有帮助。
2、导入图像,Image.open
打开图像文件并返回一个Image对象。
3、检查图像的颜色模式,im.mode
检查Image对象的颜色模式。返回值字符串,表示图像的颜色模式如'RGB'、'RGBA'、'L'等。
如果图像是RGB模式(红绿蓝三通道),则执行以下操作:
将图像转换为NumPy数组:arr
是一个三维数组,其中包含了图像的RGB值。
计算灰度值:使用加权平均方法将RGB值转换为灰度值。这里的权重 (0.3, 0.59, 0.11)
表示 人眼对绿色最敏感,红色次之,蓝色最不敏感。
增加亮度:将灰度值乘以1.3来增加亮度,np.clip
函数确保值在0到255之间,然后转换为整数类型。
如果图像是RGBA模式(红绿蓝加透明度),则先转换为RGB模式。如果图像已经是灰度模式('L'),则直接将图像转换为NumPy数组。
对于其他颜色模式(如CMYK),先转换为RGB模式,然后按照RGB模式的处理方法进行处理。
4、Image.fromarray
将处理后的NumPy数组转换回图像
5、im.save
保存转换后的图像
完整代码如下:
import numpy as np
from PIL import Image
fn = '彩色图像.jpg'
im = Image.open(fn)
# 检查图像的颜色模式
if im.mode == 'RGB':
arr = np.array(im)
# 红绿蓝三分量加权平均,变为灰度图像
arr = np.average(arr, axis=2, weights=(0.3, 0.59, 0.11))
# 灰度值变大,整体调亮,然后重建图像
arr = np.clip(arr * 1.3, 0, 255).astype(np.int8) # 先裁剪,再转换类型
elif im.mode == 'RGBA':
# 对于RGBA图像,先转换为RGB
arr = np.array(im.convert('RGB'))
# 红绿蓝三分量加权平均,变为灰度图像
arr = np.average(arr, axis=2, weights=(0.3, 0.59, 0.11))
# 灰度值变大,整体调亮,然后重建图像
arr = np.clip(arr * 1.3, 0, 255).astype(np.int8) # 先裁剪,再转换类型
elif im.mode == 'L':
# 如果图像已经是灰度图像,则不需要转换
arr = np.array(im)
else:
# 对于其他模式,如CMYK,先转换为RGB
arr = np.array(im.convert('RGB'))
# 红绿蓝三分量加权平均,变为灰度图像
arr = np.average(arr, axis=2, weights=(0.3, 0.59, 0.11))
# 灰度值变大,整体调亮,然后重建图像
arr = np.clip(arr * 1.3, 0, 255).astype(np.int8) # 先裁剪,再转换类型
im_gray = Image.fromarray(arr, 'L')
im_gray.show() # 显示图像
im_gray.save('转换后的灰度图像.jpg') # 保存图像文件