读取彩色图像,并将其转换为灰度图像并增加亮度

 要完成读取彩色图像,并将其转换为灰度图像并增加亮度。主要通过使用了Python的Pillow库(PIL)和NumPy库来处理图像。它读取一个彩色图像文件,将其转换为灰度图像,并增加亮度。

 1、导入需要的库

import numpy as np
from PIL import Image

这里导入了NumPy库用于数值计算,以及Pillow库用于图像处理。

Pillow(PIL Fork)是一个Python图像处理库,它提供了广泛的文件格式支持、强大的图像处理能力和效果处理功能。 

  • 理解模式:我们需要熟悉不同的图像模式对于处理图像至关重要,因为不同的模式影响图像处理的方式和结果。
  • 数组操作:同时掌握如何将图像转换为数组和从数组创建图像,这使得可以使用NumPy等库进行高效的数值计算。
  • 增强与滤镜:使用Pillow提供的工具来增强图像和应用滤镜效果,这对于图像预处理和视觉效果的创造很有帮助。

2、导入图像,Image.open 打开图像文件并返回一个Image对象。

3、检查图像的颜色模式,im.mode 检查Image对象的颜色模式。返回值字符串,表示图像的颜色模式如'RGB'、'RGBA'、'L'等。

如果图像是RGB模式(红绿蓝三通道),则执行以下操作: 

     将图像转换为NumPy数组:arr 是一个三维数组,其中包含了图像的RGB值。

     计算灰度值:使用加权平均方法将RGB值转换为灰度值。这里的权重 (0.3, 0.59, 0.11) 表示       人眼对绿色最敏感,红色次之,蓝色最不敏感。

     增加亮度:将灰度值乘以1.3来增加亮度,np.clip 函数确保值在0到255之间,然后转换为整数类型。

如果图像是RGBA模式(红绿蓝加透明度),则先转换为RGB模式。如果图像已经是灰度模式('L'),则直接将图像转换为NumPy数组。

对于其他颜色模式(如CMYK),先转换为RGB模式,然后按照RGB模式的处理方法进行处理。

4、Image.fromarray 将处理后的NumPy数组转换回图像

5、im.save 保存转换后的图像

完整代码如下:

import numpy as np
from PIL import Image

fn = '彩色图像.jpg'
im = Image.open(fn)

# 检查图像的颜色模式
if im.mode == 'RGB':
    arr = np.array(im)
    # 红绿蓝三分量加权平均,变为灰度图像
    arr = np.average(arr, axis=2, weights=(0.3, 0.59, 0.11))
    # 灰度值变大,整体调亮,然后重建图像
    arr = np.clip(arr * 1.3, 0, 255).astype(np.int8)  # 先裁剪,再转换类型
elif im.mode == 'RGBA':
    # 对于RGBA图像,先转换为RGB
    arr = np.array(im.convert('RGB'))
    # 红绿蓝三分量加权平均,变为灰度图像
    arr = np.average(arr, axis=2, weights=(0.3, 0.59, 0.11))
    # 灰度值变大,整体调亮,然后重建图像
    arr = np.clip(arr * 1.3, 0, 255).astype(np.int8)  # 先裁剪,再转换类型
elif im.mode == 'L':
    # 如果图像已经是灰度图像,则不需要转换
    arr = np.array(im)
else:
    # 对于其他模式,如CMYK,先转换为RGB
    arr = np.array(im.convert('RGB'))
    # 红绿蓝三分量加权平均,变为灰度图像
    arr = np.average(arr, axis=2, weights=(0.3, 0.59, 0.11))
    # 灰度值变大,整体调亮,然后重建图像
    arr = np.clip(arr * 1.3, 0, 255).astype(np.int8)  # 先裁剪,再转换类型

im_gray = Image.fromarray(arr, 'L')
im_gray.show()  # 显示图像
im_gray.save('转换后的灰度图像.jpg')  # 保存图像文件

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值