1126: 布尔矩阵的奇偶性
时间限制: 1 Sec 内存限制: 128 MB
提交: 10707 解决: 3738
[状态] [讨论版] [提交] [命题人:admin]
题目描述
一个布尔方阵具有奇偶均势特性,当且仅当 每行、每列总和为偶数,即包含偶数个1。如下面这个4*4的矩阵就具有奇偶均势特性:
1 0 1 0
0 0 0 0
1 1 1 1
0 1 0 1
编写程序,读入一个n阶方阵并检查它是否具有奇偶均势特性。如果没有,你的程序应当再检查一下它是否可以通过修改一位(把0改为1,把1改为0)来使它具有奇偶均势特性;如果不可能,这个矩阵就被认为是破坏了。
输入
第一行是一个整数n ( 0< n < 100 ),代表该方阵的阶数。然后输入n 行,每行n个整数(0或1)。
输出
如果矩阵是布尔矩阵,输出“OK”;如果能通过只修改该矩阵中的一位来使它成为布尔矩阵,则输出“Change bit(i,j)”,这里i和j是被修改的元素的行与列(行,列号从0开始);否则,输出“Corrupt”。
样例输入 Copy
4 1 0 1 0 0 0 0 0 1 1 1 1 0 1 0 1
样例输出 Copy
OK
代码:
#include<stdio.h>
int main()
{
int n,i,j,sumx=0,sumy=0,isx=0,isy=0,x,y;
scanf("%d\n",&n);
int square[n][n];
for(i=0;i<n;i++)
for(j=0;j<n;j++)
scanf("%d",&square[i][j]);//储存矩阵
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
isx+=square[i][j];
}
if(isx%2!=0)//行是否为奇数
{
sumx++;//如果是奇数,修改点加一
x=i;//确认修改点横坐标
isx=0;//重置行的累加和
}
}
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
isy+=square[j][i];
}
if(isy%2!=0)//列是否为奇数
{
sumy++;//如果是奇数,修改点加一
y=i;//确认修改点纵坐标
isy=0;//重置列的累加和
}
}
if(sumx==0&&sumy==0)//如果没有修改点(即行,列均不是奇数)
printf("OK");
else if(sumx==1&&sumy==1)//如果只有一个修改点,则该矩阵可改
printf("Change bit(%d,%d)",x,y);
else printf("Corrupt");//否则不可改
}