白水baishui
码龄7年
关注
提问 私信
  • 博客:4,633,972
    社区:224
    问答:3,477
    动态:9,007
    4,646,680
    总访问量
  • 323
    原创
  • 764
    排名
  • 59,677
    粉丝

个人简介:天光乍破

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江西省
  • 加入CSDN时间: 2017-06-16
博客简介:

白水的博客

博客描述:
欢迎你的光临,随便看看就好
查看详细资料
  • 原力等级
    领奖
    当前等级
    9
    当前总分
    9,635
    当月
    36
个人成就
  • 人工智能领域优质创作者
  • 博客专家认证
  • 获得6,640次点赞
  • 内容获得1,774次评论
  • 获得17,122次收藏
  • 代码片获得13,688次分享
创作历程
  • 2篇
    2024年
  • 9篇
    2023年
  • 22篇
    2022年
  • 47篇
    2021年
  • 44篇
    2020年
  • 48篇
    2019年
  • 112篇
    2018年
  • 49篇
    2017年
成就勋章
TA的专栏
  • 推荐系统
    19篇
  • 并行与分布式
    6篇
  • 机器学习
    2篇
  • 机器学习
    20篇
  • 深度学习
    16篇
  • 强化学习
    14篇
  • 数据分析
    16篇
  • 信息检索
    3篇
  • 数字图像处理
    14篇
  • 软件工程
    7篇
  • 数据库
    14篇
  • 编程语言
    1篇
  • C / C++
    34篇
  • Java
    11篇
  • ASP.NET
    10篇
  • Python
    42篇
  • 汇编
    2篇
  • Web
    3篇
  • 数学
    1篇
  • 高等数学
    29篇
  • 概率统计
    14篇
  • 离散数学
    8篇
  • 最优化理论与设计
    5篇
  • 算法与数据结构
    18篇
  • 计算机
    2篇
  • Android
    6篇
  • Windows
    11篇
  • Linux
    15篇
  • Nginx
    6篇
  • WampServer
    3篇
  • 疑难杂汇
    4篇
  • 文献
    14篇
TA的推广
兴趣领域 设置
  • Python
    python
  • 人工智能
    机器学习深度学习pytorch
个人公众号【推荐系统新视野】
分享一下日常应用实践技术文章,包括推荐系统、机器学习等方向
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

最近写了一本书,是关于“强化学习与大模型推荐系统”主题的,打算在CSDN开个专栏讲讲书中的主要内容,大家觉得怎么样? 本书是使用大模型和强化学习技术构建推荐系统的综合性指南,涵盖了大模型和强化学习的理论基础及其在构建有效推荐系统中的实际应用。 全书共10章,大致分为四个部分: 第一部分(第1章)介绍推荐系统的基础知识; 第二部分(第2-8章)讨论强化学习推荐系统的不同算法,并针对特征工程、奖励函数设计、大规模离散动作空间和仿真环境等重点内容进行了讨论; 第三部分(第9章)介绍了大语言模型及其在推荐系统上的创新研究和应用; 第四部分(第10章)展望了推荐系统的现实挑战以及未来的发展方向。

发布动态 2024.10.15

不知道密码,一样能卸载瑞星esm防病毒终端安全防护系统

依次点击右键菜单,使用360强力删除的“防止恢复(针对隐私文件,粉碎时间较长)”模式删除它。离开单位后试图卸载瑞星的时候却发现还需要密码,真是烦死了。研究了几分钟后找到了完美卸载方法。最后,使用360安全卫士做一次电脑体检,清理一次垃圾(含注册表),正常重启即可。首先,让我们请出老流氓360安全卫士,下载好它,让右键菜单出现。之后,进入安全模式(shift+重启),找到。使用 360强力删除。
原创
发布博客 2024.06.18 ·
1125 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

linux系统当matplotlib显示中文时出现“findfont”错误怎么办?

此时再使用matplotlib输出中文,就不会报“findfont”错误了。然后将自己的字体文件拷贝到该目录中,例如。
原创
发布博客 2024.04.10 ·
527 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

如何利用plotly和geopandas根据美国邮政编码(Zip-Code)绘制美国地图

可以在efrainmaps(https://www.efrainmaps.es/english-version/free-downloads/united-states/)下载。我希望根据Zip-code计算出用户所在的州,然后在地图上显示每个州的用户数量。
原创
发布博客 2023.07.21 ·
3445 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

python实现将给定列表划分为元素和大致相等的两个子列表

假设现有列表`[300,150,75,38,19,9,5,2]`,我想把它划分为两个子列表,并要求两个列表的元素和大致相等,应该如何做?如果我仅仅只是想将一个列表前后切分成元素和大致相等的两个子列表,并且保持元素顺序不变化,应该怎么做呢?实际上只需要一些小小的改动就可以了。可以看到,子列表的顺序和在原列表中是一样的。在写这篇博客之前,我已经浏览了。
原创
发布博客 2023.04.18 ·
1184 阅读 ·
4 点赞 ·
3 评论 ·
5 收藏

20分钟,使用Amazon SageMaker快速搭建属于自己的AIGC应用

人工智能自动生成内容(AIGC)是一种基于人工智能(AI)技术的内容创作方法,旨在快速、高效地生成高质量、有创意的文本、图像、音频或视频等多种形式的内容。借助先进的深度学习和自然语言处理技术,AIGC能够理解和学习人类语言、语境、知识和创意,从而根据用户需求生成各种类型的内容。这其中尤其以为代表性技术和应用,它用于从自然语言描述生成数字图像。Amazon SageMaker 是一种完全托管式的机器学习服务,旨在帮助开发者和数据科学家快速、轻松地构建、训练和部署机器学习模型。
原创
发布博客 2023.04.06 ·
24576 阅读 ·
551 点赞 ·
43 评论 ·
586 收藏

大模型时代来临,智能文档处理该走向何方?

虽然通用人工智能的大门尚未完全叩开,但是我们已经看到了光明的前景。自去年ChatGPT发布以来,大语言模型(Large Language Model, LLM)的发展仿佛瞬间驶入了快车道,每天都能听到对相关话题的讨论。底层视觉研究的初衷在于,计算机所接收的现实图像常常受到噪音干扰,例如扭曲、模糊、光影等现象,因此,在进一步分析和理解输入图像之前,需要进行底层,需要进行底层视觉处理,以对图像进行“预处理”。以试卷文档处理为例,不规范的拍照方式会严重影响文本检测和提取的成功率。
原创
发布博客 2023.03.24 ·
8100 阅读 ·
45 点赞 ·
32 评论 ·
41 收藏

Pytorch 2.0来了!来看看新特性怎么应用到自己的代码里

Pytorch2.0和GPT4、文心一言同一时间段发布,可谓是热闹至极,我看了看Pytorch 2.0的文档,一句话概括下,2.0的功能介绍,核心就是加入这行代码就能优化你的模型,优化后的模型和往常使用方式一样,推理速度会提升,比较重要的一点是,可以用于训练或者部署,训练可以传梯度,这次是带有AOTautograd的。然而需要注意的是,这行代码(编译)本身会消耗不少时间。Pytorch官方在A100上测试了三个模型仓库的模型,加速比如下:看起来很不错。那废话不多说,来看看怎么用。
原创
发布博客 2023.03.17 ·
2518 阅读 ·
5 点赞 ·
3 评论 ·
3 收藏

利用Flask框架将你的python脚本变成服务

之后运行该Flaks应用。写好代码后,假设文件名为。
原创
发布博客 2023.02.23 ·
765 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

如何用Python读取Amazon的Review数据

Amazon(http://jmcauley.ucsd.edu/data/amazon/)(https://nijianmo.github.io/amazon/index.html)数据集包含来自亚马逊的产品评论和元数据,其中包括1996年5月至2014年7月的1.428亿条评论。如果我们需要用到Amazon的评论数据,那就要先下载好数据集。
原创
发布博客 2023.02.08 ·
2288 阅读 ·
2 点赞 ·
1 评论 ·
11 收藏

合合信息——用智能文字识别技术赋能古彝文原籍数字化

现今我们所谓的“古彝文”指的是在民间流通使用的原生态彝文,据《滇川黔桂彝文字集》显示,这种文字多达87046字;在国家图书馆珍藏中,由这些文字书写的古彝文典籍共有592册(件),可见其蕴含着巨大的文化价值和实用价值。在当代,彝文依然拥有广泛的受用人群。四川省曾在1980年发布规范彝文共819字,截止2012年,滇川黔桂发布的通用彝文有5598字。这两种彝文常用于仪式、节庆、旅游景点等场合——彰显彝族非物质文化遗产的传承;同时也用于民族地区相关政策与宣传文件的翻译,以及文学创作。
原创
发布博客 2023.01.10 ·
5237 阅读 ·
21 点赞 ·
27 评论 ·
12 收藏

Python 将关系对数据转换为图数据 / 邻接矩阵

在深度学习任务,例如推荐系统中,将关系转换为图表示,即邻接矩阵是常用的操作。通常的做法是先将关系对数据转换为图数据,然后生成该图的邻接矩阵,再存储为稀疏矩阵。但这种方法不适用于大型矩阵的操作,通常会报内存溢出的错误。以推荐系统的Amazon的评级数据为例(Movielens等同理),这里提供一种方法将图数据直接存储为稀疏矩阵。
原创
发布博客 2023.01.09 ·
3220 阅读 ·
4 点赞 ·
0 评论 ·
28 收藏

昆仑天工AIGC——基于Stable Diffusion的多语言AI作画大模型测评

昆仑万维集团作为中国领先的互联网平台出海企业,逐渐在全球范围内形成了海外信息分发及元宇宙平台Opera、海外社交娱乐平台StarX、全球移动游戏平台Ark Games、休闲娱乐平台闲徕互娱、投资板块等五大业务,市场遍及中国、东南亚、非洲、中东、北美、南美、欧洲等地,为全球互联网用户提供社交、资讯、娱乐等信息化服务。在训练自编码器时,为了避免潜在表示空间出现高度的异化,作者使用了两种正则化方法,一种是KL-reg,另一种是VQ-reg,因此在官方发布的一阶段预训练模型中,会看到KL和VQ两种实现。
原创
发布博客 2022.12.16 ·
11902 阅读 ·
14 点赞 ·
0 评论 ·
18 收藏

推荐系统中的公平性

推荐系统中的公平性是指确保推荐系统的推荐结果是基于无偏和公正的原则产生的。从用户侧考虑,推荐结果不应受到种族、性别、年龄或其他可能导致歧视或不平等待遇的用户特征(敏感属性)等因素的影响。从项目侧考虑,推荐系统中的公平性应确保具有相似特征的项目有平等的被推荐机会,并且不同类别的项目在推荐结果中的分布是均匀的。推荐系统是一个多利益方的相关系统,包括(但不限于)用户和项目两个相关方。其中,用户是指接受推荐结果的一方,项目是指被排名或推荐的一方。用户侧的公平性需求通常与推荐结果的质量相关,而项目侧的公平性考虑通常侧
原创
发布博客 2022.12.06 ·
1676 阅读 ·
2 点赞 ·
0 评论 ·
15 收藏

智能文档处理、文本识别、OCR产品体验,多场景横向对比,哪家准确率最高

TextIn (https://www.textin.com/),是合合信息旗下的一站式OCR服务平台,该平台根据不同的业务场景和需求,将产品分为了通用识别、票据识别、企业证照识别、车辆相关识别、个人证件识别、港澳台证件识别、海外证件识别、文档格式转换和图像处理等,满足各种客户的图像识别和文档处理需求。本次产品体验将评测TextIn中所有服务的重点应用场景。
原创
发布博客 2022.10.24 ·
16336 阅读 ·
21 点赞 ·
2 评论 ·
12 收藏

LaTeX subfloat 子图 不显示标号

这样生成的图像会有一个标号。如果不想要显示标号,去掉。
原创
发布博客 2022.10.20 ·
4555 阅读 ·
8 点赞 ·
6 评论 ·
13 收藏

如何把Netflix数据集转换成Movielens格式?

点击“Download”,下载文件archive.zip并解压。5、将物品(电影)id加入dataframe。6、保存dataframe。
原创
发布博客 2022.07.25 ·
742 阅读 ·
9 点赞 ·
0 评论 ·
9 收藏

Python常用的设计模式

抽象工厂模式和建造者模式相比于简单工厂模式和工厂方法模式而言更加灵活也更加复杂。通常情况下,软件设计以简单工厂模式或工厂方法模式开始,当发现设计需要更大的灵活性的时候,则向更加复杂的设计模式演化。............
原创
发布博客 2022.07.22 ·
3788 阅读 ·
23 点赞 ·
0 评论 ·
32 收藏

基于线性函数近似的安全强化学习 Safe RL with Linear Function Approximation 翻译 1

论文:Safe Reinforcement Learning with Linear Function Approximation下载地址:http://proceedings.mlr.press/v139/amani21a/amani21a.pdf会议/年份:PMLR / 2021Word版本下载地址(辛辛苦苦打出来的):近年来,强化学习的安全性变得越来越重要。然而,现有的解决方案要么无法严格避免选择不安全的动作,这可能导致安全关键系统的灾难性结果,要么无法为需要学.........
翻译
发布博客 2022.07.02 ·
518 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

基于线性函数近似的安全强化学习 Safe RL with Linear Function Approximation 翻译 2

论文:Safe Reinforcement Learning with Linear Function Approximation下载地址:http://proceedings.mlr.press/v139/amani21a/amani21a.pdf会议/年份:PMLR / 2021Word版本下载地址(辛辛苦苦打出来的):本文翻译属于半人工,有错漏请谅解。第 2 节中介绍的 SLUCB-QVI 只能输出确定性策略。 在本节中,我们表明我们的结果可以扩展到随机策略选择的设置,这在实践中可能是可取的。
翻译
发布博客 2022.07.02 ·
499 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多