白水baishui
码龄5年
  • 3,435,942
    被访问
  • 306
    原创
  • 524
    排名
  • 27,883
    粉丝
关注
提问 私信

个人简介:天光乍破

  • 加入CSDN时间: 2017-06-16
博客简介:

白水的博客

博客描述:
欢迎你的光临,随便看看就好
查看详细资料
  • 9
    领奖
    总分 7,661 当月 292
个人成就
  • 人工智能领域优质创作者
  • 博客专家认证
  • 获得4,645次点赞
  • 内容获得1,445次评论
  • 获得9,206次收藏
创作历程
  • 12篇
    2022年
  • 48篇
    2021年
  • 44篇
    2020年
  • 49篇
    2019年
  • 112篇
    2018年
  • 49篇
    2017年
成就勋章
TA的专栏
  • 推荐系统
    15篇
  • 并行与分布式
    6篇
  • RecSim
    1篇
  • 机器学习
    2篇
  • 机器学习
    20篇
  • 深度学习
    13篇
  • 强化学习
    12篇
  • 数据分析
    16篇
  • 信息检索
    3篇
  • 数字图像处理
    13篇
  • 软件工程
    7篇
  • 数据库
    14篇
  • 编程语言
    1篇
  • C / C++
    34篇
  • Java
    11篇
  • ASP.NET
    10篇
  • Python
    34篇
  • 汇编
    2篇
  • Web
    1篇
  • 数学
    1篇
  • 高等数学
    29篇
  • 概率统计
    14篇
  • 离散数学
    8篇
  • 最优化理论与设计
    5篇
  • 算法与数据结构
    18篇
  • 计算机
    2篇
  • Android
    6篇
  • Windows
    10篇
  • Linux
    14篇
  • Nginx
    6篇
  • WampServer
    3篇
  • 疑难杂汇
    3篇
  • 文献
    8篇
兴趣领域 设置
  • Python
    python
  • 人工智能
    机器学习深度学习pytorch
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

逆向倾向评分 (Inverse Propensity Scoring, IPS) 原理解析与MF算法的结合使用

当历史交互数据为MCAR(Missing Completely At Random,完全随机缺失)时,评级预测损失函数可以定义为:LossNaive=1∣{(u,i):ou,i=1}∣∑(u,i):ou,i=1δu,i(Y,Y^)\mathcal{Loss}_{Naive}=\frac{1}{|\{(u,i):o_{u,i}=1\}|}\sum_{(u,i):o_{u,i}=1}\delta_{u,i}(Y,\hat{Y})LossNaive​=∣{(u,i):ou,i​=1}∣1​(u,i):ou,i​
原创
发布博客 2022.04.29 ·
1022 阅读 ·
10 点赞 ·
0 评论

Ubuntu 解决向日葵切换账号以后黑屏的问题

由于安全保护,可能只有某一账号才有资格看到被连接的桌面,所以当我们切换用户的时候,向日葵会立即黑屏,再想切换回来就很麻烦了,下面我提供一种用终端重新登录账号的方法。一、首先:检查Ubuntu开机自动登录用户是否正确。1、打开配置文件sudo vim /etc/gdm3/custom.conf2、修改文件中的AutomaticLoginEnable = trueAutomaticLogin = <user name>二、然后,重启系统,让系统自动登录到之前可以显示的账户shut
原创
发布博客 2022.04.09 ·
447 阅读 ·
3 点赞 ·
0 评论

Linux 分配新的账号

为了让其他人在服务器上进行工作,同时不破坏原有的文件,我们通常会分配一个新的账号来用。流程如下:useradd username -m (-m 相当于会在home目录下自动创建对应的用户目录)passwd username (为新用户设置密码)usermod -s /bin/bash username (指定shell,否则会非常不便于终端操作)有时候需要改变一些简化命令的操作,例如ll有时会默认显示隐藏文件,而我们不需要显示隐藏文件。这时候可以:vim ~/.bashrc (打开当前用户的
原创
发布博客 2022.03.29 ·
947 阅读 ·
1 点赞 ·
0 评论

pandas 将字符串映射为数字的方法

在有些数据集中,有些数据变量用字符串表示,但为了方便处理,往往想转换为好处理的格式,这时候不一定要用one hot进行编码,也可以直接转成整数:test_df["xx"] = pd.factorize(test_df["xx"])[0].astype(int)效果gift_cards["user_id"] = pd.factorize(gift_cards["user_id"])[0].astype(int): user_id item_id ratings
原创
发布博客 2022.03.27 ·
1175 阅读 ·
1 点赞 ·
0 评论

推荐系统 MostPopular 算法的 Python 实现

MostPopular 算法的 是指对每个用户都选择出当前流行度最高的Top-K个物品进行推荐,在推荐的时候,需要去除用户原先就浏览过的项目。算法代码如下:# Most Popdef MostPopular(pop_dict, I, K): ''' pop_dic:流行度字典,存储了每个item:pop_value的键值对。 I:用户可以选择的Item空间(需去除已经看过的item) K:Top-K 值,推荐出K个item给用户 '''
原创
发布博客 2022.03.24 ·
1035 阅读 ·
0 点赞 ·
0 评论

想要神经网络输出分类的概率值?应该这样写代码

我们构造一个简单的神经网络,通常情况下n_output是分类数量,例如二分类任务那n_output=2、六分类任务那么n_output=6class Net(torch.nn.Module): def __init__(self, n_feature, n_hidden, n_output): super(Net, self).__init__() self.inLayer = torch.nn.Linear(n_feature, n_hidden) # 输入层
原创
发布博客 2022.03.14 ·
1101 阅读 ·
2 点赞 ·
0 评论

基于强化学习的可解释性推荐 文献三篇

A Reinforcement Learning Framework for Explainable Recommendation. IEEE 2018现在很多推荐模型的机制是复杂且难以解释的,此时需要在对推荐结果进行事后解释,即把推荐模型与解释模型分离开,用单独的模型推荐结果作出解释。本文使用强化学习方法对推荐结果生成解释。在这个可解释框架中,被解释的推荐模型作为环境的一部分,对强化学习方法生成的句子解释进行奖励。框架中有两个智能体与环境交互,第一个智能体根据当前状态生成句子解释,第二个智能体根据第一个
原创
发布博客 2022.03.02 ·
507 阅读 ·
0 点赞 ·
0 评论

推荐系统去流行度偏差(bias)文献四篇

Keeping Dataset Biases out of the Simulation : A Debiased Simulator for Reinforcement Learning based Recommender Systems. (RecSys 2020)作者为了解决历史数据中的用户与项目之间存在的两种交互偏差:选择偏差和流行度偏差,提出在构造“用户-项目”评级矩阵之前执行去偏差的步骤。由于选择偏差和流行度偏差,导致历史记录中用户对项目的评级是有选择性的,所以依照历史数据构造的评级矩阵的稀疏
原创
发布博客 2022.03.02 ·
512 阅读 ·
0 点赞 ·
0 评论

2020-2021顶会关于推荐系统中的解决偏差(bias)问题的文献汇总.zip

发布资源 2022.02.22 ·
zip

2020-2021年顶会上关于解决偏差(bias)问题的文献整理

文章目录1. 偏差分析2. 数据偏差2.1. 选择偏差 Selection Bias2.2. 一致性偏差 Conformity Bias2.3. 曝光偏差 Exposure Bias2.4. 位置偏差 Position Bias (隐式反馈数据)3. 模型偏差3.1. 归纳偏差 Inductive Bias4. 推荐结果的偏差与不公平性4.1. 流行度偏差 Popularity Bias4.2. 偏见 Unfairness (用户偏差 User Bias)5. 论文下载1. 偏差分析(1) Bi
原创
发布博客 2022.02.22 ·
645 阅读 ·
2 点赞 ·
0 评论

CUDA C/C++ 教程一:加速应用程序

文章目录1. CUDA简介2. 准备工作3. 加速系统4. 编写在GPU运行的代码4.1. 编写一个Hello GPU核函数5. CUDA线程的层次结构5.1. 启动可并行运行的核函数6. CUDA提供的线程层次结构变量6.1. 线程和块的索引6.2. 加速for循环6.3. 协调并行线程7. 分配将要在GPU和CPU上访问的内存1. CUDA简介加速计算正在逐步取代 CPU 计算,成为最佳的计算做法。近年来加速计算带来了越来越多的突破性进展,应用程序对加速计算日益增长地需求、轻松编写加速计算的程序的.
原创
发布博客 2022.02.22 ·
2875 阅读 ·
35 点赞 ·
0 评论

Matlab 如何生成三维图像

介绍两种方法,用surf和Curve Fitting,两者的区别在于:surf方法出的图是固定的,视角不可改变。Curve Fitting方法的三维图可以转动视角。一、surf例如有代码:% 生成数据xn1 = linspace (0 , 4) ;% 定 义 x1 的 点 列 默 认 是 100 个 0 4 代 表 上 下 界xn2 = linspace (0 , 4) ;% 定 义 x2 的 点 列[ X1 , X2 ] = meshgrid ( xn1 , xn2) ;% X、Y 轴 数 据
原创
发布博客 2022.01.29 ·
5365 阅读 ·
20 点赞 ·
0 评论

安装HElib并运行示例程序

文章目录1. HElib简介2. HElib安装的前期准备2.1. git 安装/升级2.2. GNU make 安装/升级2.3. g++ 安装/升级2.4. cmake 安装/升级2.5. m4和patchelf 安装/升级3. HElib的下载和安装4. 运行HElib示例程序1. HElib简介HElib是一个基于C++语言的同态加密开源软件库,底层依赖于NTL数论运算库和GMP多精度运算库实现,下载地址在:github HElib。2. HElib安装的前期准备HElib可以在Ubuntu
原创
发布博客 2022.01.28 ·
674 阅读 ·
1 点赞 ·
0 评论

今日无事,写了五福

发布动态 2022.01.20

还不错

发布动态 2021.12.27

python 或 conda 安装 pyterrier

不要直接用pip install pyterrier要pip install python-terrierconda同理
原创
发布博客 2021.12.26 ·
317 阅读 ·
1 点赞 ·
0 评论

留一法交叉验证 Leave-One-Out Cross Validation

交叉验证法,就是把一个大的数据集分为 kkk 个小数据集,其中 k−1k-1k−1 个作为训练集,剩下的 111 个作为测试集,在训练和测试的时候依次选择训练集和它对应的测试集。这种方法也被叫做 kkk 折交叉验证法(k-fold cross validation)。最终的结果是这 k 次验证的均值。此外,还有一种交叉验证方法就是 留一法(Leave-One-Out,简称LOO),顾名思义,就是使 kkk 等于数据集中数据的个数,每次只使用一个作为测试集,剩下的全部作为训练集,这种方法得出的结果与训练整个
原创
发布博客 2021.12.20 ·
2134 阅读 ·
4 点赞 ·
1 评论

分布式互斥算法Lamport 算法和Ricart-Agrawala 算法

1. 分布式互斥算法的概念分布式互斥算法,就是在分布式系统中,通过某种消息传递算法来决定,控制哪个进程可以访问临界区资源。如何去评价分布式互斥算法是否达到了这个目的呢?于是就定义出了三个算法指标:ME1 安全性至多一个进程在使用临界区,不会有多个进程同时在临界区执行;ME2 活性不会发生死锁、饿死现象;ME3 公平性进程顺序执行(FIFO),先到先进。能满足这三个条件的算法,就是一个良好的分布式互斥算法。2. Lamport 算法某个进程 pip_ipi​ 请求临界区时,会先向所有
原创
发布博客 2021.12.10 ·
833 阅读 ·
1 点赞 ·
0 评论

matlab 线性规划 单纯形法

先来介绍一下单纯形法,下面解释是从国科大算法最优化课程林姝老师的课件中截取的。接下来写代码,单纯形法函数:%% SimplexMax.mfunction [x, c, z, pt, ind_B, ind_N] = SimplexMax(c, A, b, ind_B, iter_tag)% 单纯形法求解标准形线性规划问题: max cx s.t. Ax=b x>=0% 输入参数: c为目标函数系数, A为等式约束方程组系数矩阵, b为等式约束方程组常数项, ind_B为松弛变量索引% 输出
原创
发布博客 2021.12.09 ·
965 阅读 ·
0 点赞 ·
0 评论

matlab 判断矩阵是正定、半正定还是负定

% 判断矩阵m是正定、半正定还是负定m = [2 -1; -1 2]; if issymmetric(m) % 检查矩阵是否对称 % disp('矩阵对称'); d = eig(m); % 计算矩阵特征值 if all(d > 0) disp('矩阵正定'); elseif all(d >= 0) disp('矩阵半正定'); else disp('矩阵负定'); endelse di
原创
发布博客 2021.12.09 ·
2084 阅读 ·
1 点赞 ·
2 评论
加载更多