想要神经网络输出分类的概率值?应该这样写代码

我们构造一个简单的神经网络,通常情况下n_output是分类数量,例如二分类任务那n_output=2、六分类任务那么n_output=6

class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        self.inLayer = torch.nn.Linear(n_feature, n_hidden) # 输入层
        self.hiddenLayer = torch.nn.Linear(n_hidden, n_hidden) # 隐藏层
        self.outLayer = torch.nn.Linear(n_hidden, n_output) # 输出层

    # 前向计算函数,定义完成后会隐式地自动生成反向传播函数
    def forward(self, x):
        x = F.relu(self.hiddenLayer(self.inLayer(x)))
        x = self.outLayer(x)
        return x

假设要进行一个二分类任务,这时的输出x的值是类别0和类别1的预测值,我们可以使用softmax函数将其转换为概率值:

class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        self.inLayer = torch.nn.Linear(n_feature, n_hidden) # 输入层
        self.hiddenLayer = torch.nn.Linear(n_hidden, n_hidden) # 隐藏层
        self.outLayer = torch.nn.Linear(n_hidden, n_output) # 输出层

    # 前向计算函数,定义完成后会隐式地自动生成反向传播函数
    def forward(self, x):
        x = F.relu(self.hiddenLayer(self.inLayer(x)))
        x = self.outLayer(x)
        prob = F.softmax(x, dim=1) # softmax将预测值转换为概率
        out = torch.unsqueeze(prob.argmax(dim=1), dim=1) # argmax选取概率最大的预测项,unsqueeze扩维
        return out

输出结果例如:

# prob = F.softmax(x, dim=1)的输出结果
# print(prob)
tensor([[0.5059, 0.4941],
        [0.5018, 0.4982],
        [0.4886, 0.5114]], grad_fn=<SoftmaxBackward0>)

# out = torch.unsqueeze(prob.argmax(dim=1), dim=1)的输出结果
# print(out)
tensor([[0],
        [0],
        [1]])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白水baishui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值