设 f(x) 在点 x0 的某去心邻域中有定义,
在这个前提下,如果
f(x)
有一下三种情形之一:
1、在
x=x0
处没有定义;
2、虽在
x=x0
处有定义,但
limx→x0f(x)
不存在;
3、虽在
x=x0
处有定义,且
limx→x0f(x)
存在,但
limx→x0f(x)≠f(x0)
,
那么 f(x) 在点 x0 处为不连续,而点 x0 称为函数 f(x) 的间断点。
函数间断点通常分为两大类:第一类间断点和第二类间断点,左右极限都存在的间断点称为第一类间断点,其它的则都是第二类间断点。
函数间断点通常有以下几种常见类型:
1、无穷间断点;
2、震荡间断点;
3、可去间断点;
4、跳跃间断点,
下面对几种间断点进行详解:
1、无穷间断点
定义:函数
f(x)
在
x0
处没有定义,且在
x0
处的左右极限至少有一个不存在,则
x0
为
f(x)
的无穷间断点。
例:
f(x)=tanx
在
x=π2
处没有定义,所以
x=π2
为
f(x)=tanx
的间断点。
f(x)=tanx
在
x=π2
处既没有左极限也没有右极限,所以
x=π2
为
f(x)=tanx
的无穷间断点。
2、震荡间断点
定义:函数
f(x)
在
x0
处没有定义,且在
x
趋近于
例:
f(x)=sin1x
在
x=0
处没有定义,所以
x=0
为
f(x)=sin1x
的间断点。
f(x)=sin1x
在
x→x0
时,函数值在-1到+1之间变动无限多次,所以
x=0
为
f(x)=sin1x
的震荡间断点。
3、可去间断点
定义:函数
f(x)
在
x0
处没有定义或定义点的函数值不能使
f(x)
成为一个连续函数,且若在
x0
处能通过补充定义使
f(x)
成为连续,则
x0
为
f(x)
的可去间断点。
例:
f(x)=x2−1x−1
在
x=1
处没有定义,所以
x=1
为
f(x)=x2−1x−1
的间断点。
但如果补充定义:令
x=1
时
f(x)=2
,那么
f(x)
即成为了连续函数,所以
x=1
为
f(x)=x2−1x−1
的可去间断点。
4、跳跃间断点
定义:
f(x)
在
x0
处有定义,且
limx→x0f(x)
存在,但左右极限不相等,则
x0
为
f(x)
的跳跃间断点。
例:
当 x→0 时,
左右极限虽然都存在,但是不相等,所以极限 limx→0f(x) 不存在, x=0 是 f(x) 的间断点,
f(x) 在 x=0 处产生跳跃现象,所以 x=0 为 f(x) 的跳跃间断点。