函数的间断点

f(x) 在点 x0 的某去心邻域中有定义,

在这个前提下,如果 f(x) 有一下三种情形之一:
1、在 x=x0 处没有定义;
2、虽在 x=x0 处有定义,但 limxx0f(x) 不存在;
3、虽在 x=x0 处有定义,且 limxx0f(x) 存在,但 limxx0f(x)f(x0)

那么 f(x) 在点 x0 处为不连续,而点 x0 称为函数 f(x) 的间断点。

函数间断点通常分为两大类:第一类间断点和第二类间断点,左右极限都存在的间断点称为第一类间断点,其它的则都是第二类间断点。

函数间断点通常有以下几种常见类型:
1、无穷间断点;
2、震荡间断点;
3、可去间断点;
4、跳跃间断点,


下面对几种间断点进行详解:
1、无穷间断点
定义:函数 f(x) x0 处没有定义,且在 x0 处的左右极限至少有一个不存在,则 x0 f(x) 的无穷间断点。

例: f(x)=tanx x=π2 处没有定义,所以 x=π2 f(x)=tanx 的间断点。
这里写图片描述
f(x)=tanx x=π2 处既没有左极限也没有右极限,所以 x=π2 f(x)=tanx 的无穷间断点。

2、震荡间断点
定义:函数 f(x) x0 处没有定义,且在 x 趋近于x0时其函数值在某个范围内无限次变动,则 x0 f(x) 的震荡间断点。

例: f(x)=sin1x x=0 处没有定义,所以 x=0 f(x)=sin1x 的间断点。
这里写图片描述
f(x)=sin1x xx0 时,函数值在-1到+1之间变动无限多次,所以 x=0 f(x)=sin1x 的震荡间断点。

3、可去间断点
定义:函数 f(x) x0 处没有定义或定义点的函数值不能使 f(x) 成为一个连续函数,且若在 x0 处能通过补充定义使 f(x) 成为连续,则 x0 f(x) 的可去间断点。

例: f(x)=x21x1 x=1 处没有定义,所以 x=1 f(x)=x21x1 的间断点。
这里写图片描述
但如果补充定义:令 x=1 f(x)=2 ,那么 f(x) 即成为了连续函数,所以 x=1 f(x)=x21x1 的可去间断点。

4、跳跃间断点
定义: f(x) x0 处有定义,且 limxx0f(x) 存在,但左右极限不相等,则 x0 f(x) 的跳跃间断点。

例:

f(n)=x1,0,x+1,x < 0x = 0x > 0

x0 时,
limx0f(x)=limx0(x1)=1

limx0+f(x)=limx0+(x+1)=1

左右极限虽然都存在,但是不相等,所以极限 limx0f(x) 不存在, x=0 f(x) 的间断点,
这里写图片描述
f(x) x=0 处产生跳跃现象,所以 x=0 f(x) 的跳跃间断点。

  • 16
    点赞
  • 0
    评论
  • 27
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值