反函数的求导法则

如果函数 x = f ( y ) x = f(y) x=f(y)在区间 I y I_y Iy内单调、可导且 f ′ ( y ) ≠ 0 f'(y) \neq 0 f(y)̸=0,那么它的反函数 y = f − 1 ( x ) y = f^{-1}(x) y=f1(x)在区间 I x = { x ∣ x = f ( y ) , y ∈ I y } I_x = \{x | x = f(y),y \in I_y\} Ix={xx=f(y)yIy}内也可导,且 [ f − 1 ( x ) ] ′ = 1 f ′ ( y ) 或 d y d x = 1 d x d y [f^{-1}(x)]' = \frac{1}{f'(y)} 或 \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} [f1(x)]=f(y)1dxdy=dydx1
这个结论可以简单表达为:反函数的导数等于直接函数导数的倒数

例:
x = sin ⁡ y , y ∈ ( − π 2 , π 2 ) x = \sin y,y \in (-\frac{\pi}{2}, \frac{\pi}{2}) x=sinyy(2π,2π)为直接导数,则 y = arcsin ⁡ x y = \arcsin x y=arcsinx是它的反函数,求反函数的导数.
解:函数 x = sin ⁡ y x = \sin y x=siny在区间内单调可导, f ′ ( y ) = cos ⁡ y ≠ 0 f'(y) = \cos y \neq 0 f(y)=cosy̸=0
因此,由公式得 ( arcsin ⁡ x ) ′ = 1 ( sin ⁡ y ) ′ (\arcsin x)' = \frac{1}{(\sin y)'} (arcsinx)=(siny)1 = 1 cos ⁡ y = 1 1 − sin ⁡ 2 y = 1 1 − x 2 = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1- x^2}} =cosy1=1sin2y 1=1x2 1

如果在求解过程中遇到不好直接求出的三角函数,可以使用画三角形法求解

  • 47
    点赞
  • 68
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白水baishui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值