木百栢
码龄7年
关注
提问 私信
  • 博客:74,062
    74,062
    总访问量
  • 4
    原创
  • 1,642,918
    排名
  • 25
    粉丝
  • 0
    铁粉

个人简介:。。。。。。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2018-05-16
博客简介:

木百栢的博客

博客描述:
学习,实践,积累
查看详细资料
个人成就
  • 获得108次点赞
  • 内容获得10次评论
  • 获得503次收藏
  • 代码片获得2,990次分享
创作历程
  • 1篇
    2021年
  • 5篇
    2018年
成就勋章
TA的专栏
  • 杂七杂八
    1篇
  • 自然语言处理
  • 统计学习方法
    2篇
  • 机器学习
  • 数据挖掘
    1篇
  • 其他
    1篇
  • cs224d
  • Python
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Zotero同步OneDrive

Zotero同步OneDrive1. 安装 Zotero + ZotFileZotFile 把文件自动重命名并且放到文件夹里,然后同步到 OneDrive2. Zotero具体设置Zotero - Preferences - Advanced - Files and Folders - Linked Attachment Base Directory选择 OneDrive 里的 Zotero 文件夹,这样当 Zotero同步的时候,会同步一个相对地址,可以避免不同 PC 上 OneDrive文
原创
发布博客 2021.10.04 ·
2219 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

转载:Python中self用法详解

转载自:https://blog.csdn.net/CLHugh/article/details/75000104 在介绍Python的self用法之前,先来介绍下Python中的类和实例…… 我们知道,面向对象最重要的概念就是类(class)和实例(in...
转载
发布博客 2018.07.16 ·
273 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

《统计学习方法》感知机学习笔记与Python实现

学习笔记1.感知机模型 假设输入空间(特征空间)是X⊆RnX⊆Rn\mathcal X \subseteq \mathbf R^n,输出空间是Y={+1,−1}Y={+1,−1}\mathcal Y = \{+1, -1\}。输入x∈Xx∈Xx \in \mathcal X表示示例的特征向量,对应于输如入空间的点;输出y∈Yy∈Yy \in \mathcal Y表示示例的类别。由输入空...
原创
发布博客 2018.05.20 ·
741 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

《统计机器学习》第一章学习笔记和习题

1. 统计学习(统计机器学习)利用计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析。 统计学习的对象是数据。统计学习关于数据的基本假设是同类数据具有一定的统计规律性。统计学习分类: 1. 监督学习(supervised learning) 2. 非监督学习(unsupervised learning) 3. 半监督学(semi-unsupervised learning...
原创
发布博客 2018.05.19 ·
690 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

上传本地代码及更新代码到GitHub教程

转自:https://www.cnblogs.com/zlxbky/p/7727895.html上传本地代码及更新代码到GitHub教程上传本地代码第一步:去github上创建自己的Repository,创建页面如下图所示:红框为新建的仓库的https地址第二步:echo "# Test" >> README.md第三步:建立git仓库git init第四步:将项目的所有文件添加到仓...
转载
发布博客 2018.05.16 ·
173 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

FP-growth算法理解和实现

FP-growth算法理解FP-growth(Frequent Pattern Tree, 频繁模式树),是韩家炜老师提出的挖掘频繁项集的方法,是将数据集存储在一个特定的称作FP树的结构之后发现频繁项集或频繁项对,即常在一块出现的元素项的集合FP树。 FP-growth算法比Apriori算法效率更高,在整个算法执行过程中,只需遍历数据集2次,就能够完成频繁模式发现,其发现频繁项集的基本过程...
原创
发布博客 2018.05.16 ·
69712 阅读 ·
108 点赞 ·
10 评论 ·
527 收藏