插入排序及时间复杂度的计算

插入排序算法详解
本文深入解析了插入排序算法的工作原理,提供了详细的Python实现代码,并分析了其时间复杂度,包括最好、最坏和平均情况下的表现。通过具体的计算过程,帮助读者理解插入排序在不同数据场景下的效率。

插入排序算法:
def insertSort(listx):
    n=len(listx)
    for i in range(1,n):
        key=listx[i]
        j=i-1
        while j>0:
            if listx[j]>key:
                listx[j+1]=listx[j]
                listx[j]=key
                j-=1
            else:
                break
    print listx
时间复杂度:
O(1)<....
然后我们计算上一期冒泡排序的时间复杂度:
1:n-1
2:n-2
3:n-3
4:n-4
.
.
.n-1:1
(n-1+1)(n-1)/2=(n^2-n)/2=n^2/2-n/2
因为n/2相对于n^2在大数据排序分析上可以忽略不计,我们只考虑影响最大的因素,所以时间复杂度结果就为:O(n^2)
插入排序的时间复杂度:
最好情况(刚好是按照预期有序数据进行排序):
所以结果就是:n-1
最坏情况:
1:n-1
2:n-2
3:n-3
4:n-4
.
.
.n-1:1
(n-1+1)(n-1)/2=(n^2-n)/2
所以平均复杂度为:
((n^2-n)/2+n-1)/2=n^2/4-n/4+n/2-1/2=n^2/4+n/2-1/2
同理,插入排序结果影响时间复杂度最大的因子仍然是n^2,所以最终的时间复杂度仍然是:O(n^2)

转载于:https://www.cnblogs.com/zhangtebie/p/11185874.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值