HBase Filter使用简要

创建表

create 'test1', 'lf', 'sf'

lf: column family of LONG values (binary value)
– sf: column family of STRING values

导入数据

put 'test1', 'user1|ts1', 'sf:c1', 'sku1'
put 'test1', 'user1|ts2', 'sf:c1', 'sku188'
put 'test1', 'user1|ts3', 'sf:s1', 'sku123'

put 'test1', 'user2|ts4', 'sf:c1', 'sku2'
put 'test1', 'user2|ts5', 'sf:c2', 'sku288'
put 'test1', 'user2|ts6', 'sf:s1', 'sku222'

一个用户(userX),在什么时间(tsX),作为rowkey对什么产品(value:skuXXX),做了什么操作作为列名,比如,c1: click from homepage; c2: click from ad; s1: search from homepage; b1: buy

查询案例

谁的值=sku188

scan 'test1', FILTER=>"ValueFilter(=,'binary:sku188')"

ROW                          COLUMN+CELL                                                                       
user1|ts2                   column=sf:c1, timestamp=1409122354918, value=sku188 

谁的值包含88

scan 'test1', FILTER=>"ValueFilter(=,'substring:88')"

ROW                          COLUMN+CELL                                                                       
user1|ts2                   column=sf:c1, timestamp=1409122354918, value=sku188                               
user2|ts5                   column=sf:c2, timestamp=1409122355030, value=sku288 

通过广告点击进来的(column为c2)值包含88的用户

scan 'test1', FILTER=>"ColumnPrefixFilter('c2') AND ValueFilter(=,'substring:88')"

ROW                          COLUMN+CELL                                                                       
user2|ts5                   column=sf:c2, timestamp=1409122355030, value=sku288

通过搜索进来的(column为s)值包含123或者222的用户

scan 'test1', FILTER=>"ColumnPrefixFilter('s') AND ( ValueFilter(=,'substring:123') OR ValueFilter(=,'substring:222') )"

ROW                          COLUMN+CELL                                                                       
user1|ts3                   column=sf:s1, timestamp=1409122354954, value=sku123                               
user2|ts6                   column=sf:s1, timestamp=1409122355970, value=sku222

rowkey为user1开头的

scan 'test1', FILTER => "PrefixFilter ('user1')"

ROW                          COLUMN+CELL                                                                       
user1|ts1                   column=sf:c1, timestamp=1409122354868, value=sku1                                 
user1|ts2                   column=sf:c1, timestamp=1409122354918, value=sku188                               
user1|ts3                   column=sf:s1, timestamp=1409122354954, value=sku123

FirstKeyOnlyFilter: 一个rowkey可以有多个version,同一个rowkey的同一个column也会有多个的值, 只拿出key中的第一个column的第一个version
KeyOnlyFilter: 只要key,不要

valuescan 'test1', FILTER=>"FirstKeyOnlyFilter() AND ValueFilter(=,'binary:sku188') AND KeyOnlyFilter()"

ROW                          COLUMN+CELL                                                                       
 user1|ts2                   column=sf:c1, timestamp=1409122354918, value=  

从user1|ts2开始,找到所有的rowkey以user1开头的

scan 'test1', {STARTROW=>'user1|ts2', FILTER => "PrefixFilter ('user1')"}

ROW                          COLUMN+CELL                                                                       
user1|ts2                   column=sf:c1, timestamp=1409122354918, value=sku188                               
user1|ts3                   column=sf:s1, timestamp=1409122354954, value=sku123 

从user1|ts2开始,找到所有的到rowkey以user2开头

scan 'test1', {STARTROW=>'user1|ts2', STOPROW=>'user2'}

ROW                          COLUMN+CELL                                                                       
user1|ts2                   column=sf:c1, timestamp=1409122354918, value=sku188                               
user1|ts3                   column=sf:s1, timestamp=1409122354954, value=sku123

查询rowkey里面包含ts3的import org.apache.hadoop.hbase.filter.CompareFilter

import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.filter.RowFilter
scan 'test1', {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), SubstringComparator.new('ts3'))}

ROW                          COLUMN+CELL                                                                       
user1|ts3                   column=sf:s1, timestamp=1409122354954, value=sku123 

查询rowkey里面包含ts的import org.apache.hadoop.hbase.filter.CompareFilter

import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.filter.RowFilter
scan 'test1', {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), SubstringComparator.new('ts'))}

ROW                          COLUMN+CELL                                                                       
user1|ts1                   column=sf:c1, timestamp=1409122354868, value=sku1                                 
user1|ts2                   column=sf:c1, timestamp=1409122354918, value=sku188                               
user1|ts3                   column=sf:s1, timestamp=1409122354954, value=sku123                               
user2|ts4                   column=sf:c1, timestamp=1409122354998, value=sku2                                 
user2|ts5                   column=sf:c2, timestamp=1409122355030, value=sku288                               
user2|ts6                   column=sf:s1, timestamp=1409122355970, value=sku222  

加入一条测试数据

put 'test1', 'user2|err', 'sf:s1', 'sku999'

查询rowkey里面以user开头的,新加入的测试数据并不符合正则表达式的规则,故查询不出来

import org.apache.hadoop.hbase.filter.RegexStringComparator
import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.filter.RowFilter
scan 'test1', {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'),RegexStringComparator.new('^user\d+\|ts\d+$'))}

ROW                          COLUMN+CELL                                                                       
user1|ts1                   column=sf:c1, timestamp=1409122354868, value=sku1                                 
user1|ts2                   column=sf:c1, timestamp=1409122354918, value=sku188                               
user1|ts3                   column=sf:s1, timestamp=1409122354954, value=sku123                               
user2|ts4                   column=sf:c1, timestamp=1409122354998, value=sku2                                 
user2|ts5                   column=sf:c2, timestamp=1409122355030, value=sku288                               
user2|ts6                   column=sf:s1, timestamp=1409122355970, value=sku222  

加入测试数据

put 'test1', 'user1|ts9', 'sf:b1', 'sku1'

b1开头的列中并且值为sku1的

scan 'test1', FILTER=>"ColumnPrefixFilter('b1') AND ValueFilter(=,'binary:sku1')"

ROW                          COLUMN+CELL                                                                       
user1|ts9                   column=sf:b1, timestamp=1409124908668, value=sku1

SingleColumnValueFilter的使用,b1开头的列中并且值为sku1的

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SingleColumnValueFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
scan 'test1', {COLUMNS => 'sf:b1', FILTER => SingleColumnValueFilter.new(Bytes.toBytes('sf'), Bytes.toBytes('b1'), CompareFilter::CompareOp.valueOf('EQUAL'), Bytes.toBytes('sku1'))}

ROW                          COLUMN+CELL                                                                       
user1|ts9                   column=sf:b1, timestamp=1409124908668, value=sku1 

hbase zkcli 的使用

hbase zkcli
ls /
[hbase, zookeeper]

[zk: hadoop000:2181(CONNECTED) 1] ls /hbase
[meta-region-server, backup-masters, table, draining, region-in-transition, running, table-lock, master, namespace, hbaseid, online-snapshot, replication, splitWAL, recovering-regions, rs]

[zk: hadoop000:2181(CONNECTED) 2] ls /hbase/table
[member, test1, hbase:meta, hbase:namespace]

[zk: hadoop000:2181(CONNECTED) 3] ls /hbase/table/test1
[]

[zk: hadoop000:2181(CONNECTED) 4] get /hbase/table/test1
?master:60000}l$??lPBUF
cZxid = 0x107
ctime = Wed Aug 27 14:52:21 HKT 2014
mZxid = 0x10b
mtime = Wed Aug 27 14:52:22 HKT 2014
pZxid = 0x107
cversion = 0
dataVersion = 2
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 31
numChildren = 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值