文章目录
一、表和表之间关系的理解?
定义:
在关系型数据库中,基于三大范式设计表结构,使得不同的表之间产生不同的关系。
不同的表之间有四种关系——一对一、一对多(多对一)、多对多
。
一对一关系示例:
- 一个学生对应一个学生档案材料,或者每个人只能有一个身份证号码,一个身份证号码只能属于一个人
一对多关系示例:
- 一对多和多对一是相对关系,比如:一门课程只能属于一个老师,而一个老师可以有多门课程
多对多关系示例:
多对多的关系可以看成两个是两个一对多的关系,在多对多中在一个表中添加一个字段就行不通了,所以处理多对多表问题时,就要考虑建立关系表了
比如:订单表、订单详情、商品之间的关系
一张订单表里面应该包含多种商品,而一种商品也可以出现在多个订单里面。这就是订单与商品多对多的关系。一张订单表里面应该包含多种商品,而一种商品也可以出现在多个订单里面。这就是订单与商品多对多的关系。
订单详细表中分别引用订单表的主键
商品表的主键作为他的外键,这样一份订单详细表的一行数据就可以说明某个商品和
这个商品属于哪个订单,实现多对多的关系。
二、Mybatis的多表联查
1.类和类之间的关系映射
代码如下(示例):
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore') import ssl ssl._create_default_https_context = ssl._create_unverified_context
2.使用步骤
代码如下(示例):
data = pd.read_csv( 'https://labfile.oss.aliyuncs.com/courses/1283/adult.data.csv') print(data.head())
该处使用的url网络请求的数据。
总结
提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。