Nvidia为高级辅助驾驶打造端到端安全体系

        随着多模态大模型的迅速发展,如今高级辅助驾驶已经进入AV2.0时代,因为涉及人身安全,高级辅助驾驶的可靠性和安全性是其中最重要的DFX因素,因此Nvidia为AV2.0推出了端到端的高级辅助驾驶系统,以大型、统一的 AI 模型为特色,可控制车辆堆栈从感知、规划到控制的多个环节。
        为此,Nvidia 推出Halos高级辅助驾驶汽车全栈式综合安全系统,涵盖车辆架构到 AI 模型,包括芯片、软件、工具和服务,整合从云端到车端的安全高级辅助驾驶开发技术套件,包括平台、算法和生态系统安全。其中在开发层面,包括设计时、部署时和验证时的防护措施。再次在计算层面,它包括 AI 训练到部署,使用三个计算平台方案:NVIDIA DGX 用于 AI 训练、在 NVIDIA OVX 上运行用于仿真的 NVIDIA Omniverse 和 NVIDIA Cosmos 以及用于部署的 NVIDIA DRIVE AGX。

        这套强大的体系由四大支柱组成,分别是 AI 设计与实施平台、面向深度学习的开发基础设施、用于高级辅助驾驶汽车开发的物理精准传感器仿真、卓越的全方位安全和网络安全计划。

1 高级辅助驾驶安全四大支柱

1.1 AI 设计与实施平台

       NVIDIA DRIVE ,全球首个可扩展 AI 平台,由硬件、软件和固件组成,融合多款AI模型算法,从云端数据中心延伸到车辆终端。硬件方面,DRIVE AGX Hyperion、DRIVE AGX Thor以及DRIVE AGX Orin等片上系统提供强大算力;软件方面,开放的NVIDIA DRIVE SDK为开发者提供高级辅助驾驶所需的基础模组和算法堆栈,包括 DriveOS安全操作系统、DriveWorks中间件等。构筑实现高级辅助驾驶领域全覆盖,从 AI 辅助驾驶到高级辅助驾驶出租车。通过高性能计算,车辆可实时感知周边环境、精准定位并规划安全路线的全栈优势。       

1.2 面向深度学习的开发基础设施

        包括 NVIDIA DGX 系统、NVIDIA Omniverse Cloud Sensor RTX 以及 NVIDIA AI 基础设施。DGX 系统是专为训练深度神经网络构建的专用 AI 超级计算机;Omniverse Cloud Sensor RTX 是用于开发高级辅助驾驶技术的云端工具,提供高保真仿真环境;高性能计算和、领域专业知识以及专业级的流畅计算,能处理测试车每年产生的海量 PB 级数据,多样化和广泛的数据集上训练 AI 模型,满足高级辅助驾驶汽车开发的大规模数据处理和存储需求,在真实世界部署前在虚拟环境中进行广泛测试,从而更好地适应各种真实世界,助于在受控环境中识别和缓解潜在安全问题,提高安全性,降低实际操作风险。       

1.3 用于高级辅助驾驶汽车开发的物理精准传感器仿真

        基于 OpenUSD 构建的 NVIDIA Omniverse Cloud Sensor RTX,为高级辅助驾驶车辆上基于物理效果的传感器(如摄像头、激光雷达、雷达和超声波传感器)及其神经网络渲染提供支持,渲染出的合成数据和真值标签可用于训练感知模型。可以模拟动态天气与光照条件,结合 AI 驱动的交通参与者行为预测,极大提高测试的准确性和全面性,解决实际道路测试难以覆盖所有场景的问题,帮助车辆更好地应对各种复杂情况。

1.4 卓越的全方位安全和网络安全计划

       功能安全方面,遵循 ISO 26262 ASIL- D标准,硬件与软件通过TUV/SUD认证,支持故障切换与最小风险状态降级策略;网络安全方面,基于 ISO/SAE 21434 标准,采用多层防御架构,包括硬件加密、入侵检测、OTA 安全更新等,并通过 Auto-ISAC应对0 Day攻击;同时,积极参与 AI 安全标准化倡议,确保决策透明性与可控性。通过建立完善的安全机制和流程,能够有效防范各种安全威胁,包括硬件故障、网络攻击以及 AI 决策的不确定性等,从功能安全和网络安全等多个维度保障高级辅助驾驶系统的安全性和可靠性。

2 内生的安全架构

       高安全性和高可靠性必然依托于强大的架构基础,将安全性植入软件工程的各个阶段,做到内生安全的完整设计、开发和测试,在各个环节制定安全标准,并极大提升可靠性和安全性。

2.1 软件定义的高级辅助驾驶安全性

       专为软件定义打造的先进安全架构,相比传统架构有如下的巨大优势:

       1.专为动态系统配置打造

       2.内含丰富软硬件的灵活平台

       3.针对越来越多的功能进行优化

       4.生态系统友好,系统边界开放

       5.专为 AI 硬件、软件和工具设计

       6.可扩展以适应新算法

       7.支持可分解式安全概念

       8.设计用于执行百万级代码

       9.可轻松无线更新

      10.功能感知、数据导向且经过验证

      11.硬件-固件-软件协调

2.2 系统开发层面

       通过将功能安全要求应用于特定系统架构来优化安全设计。故障模式及影响分析(FMEA)、故障树分析 (FTA) 和相关失效分析 (DFA) 等技术分析方法可通过迭代的方式用于识别薄弱点并改进设计。

2.3 硬件开发层面

       通过将技术安全要求融入电路板和SOC 弱点并改进硬件设计。对最终的硬件设计进行分析,可用于 硬件设计,以完善整体设计。技术分析则用于识别薄验证硬件故障相关的风险是否得到充分缓解。

2.3 软件开发层面

       考虑包括固件在内的所有软件。我们 通过将技术安全要求融入软件架构来完善整体设计。我们还在单元和集成级别执行代码检查、审查、自动化代码结构 测试和代码功能测试。专用于软件的故障模式及影响分析也被用于设计更好的软件。此外,还设计了接口、基于 需求、故障注入和资源使用验证方法的测试用例。

2.4 系统测试和验证

       完成所有必要的硬件和软件组件开发后,集成并启动系统级的校验证和确认过程。除高级辅助驾驶汽车仿真外,还可进行系统测试和验证。

3 实际应用落地难题解决与实例解析       

       在实际应用时,借助于端到端整体系的强大能力,在以下几个方面有效对业务落地提供相当大的帮助:

3.1 传感器选型及成本管控       

       高级辅助驾驶实际应用落地中,传感器是非常重要的一部分,而其选型也确实苦难,采用成本低些传感器可能导致精度不够,从而出现定位偏差;而采用高成本传感器精度,虽然数据精度提高,但其成本也高出很多;因此NVIDIA DRIVE AGX 平台具备强大的计算能力是一个不错的选择,由于可高效处理来自摄像头、雷达和激光雷达等多种传感器的数据,通过优化传感器融合算法,可在不降低感知精度的前提下,合理配置传感器数量和类型,避免过度依赖高成本传感器,这对实际落地应用时成本控制可造成相当不错的管理效果。

3.2 开发和验证中的内生安全辅助

       实际系统设计与开发过程中,代码错误导致的安全性问题和可靠性问题也占比相当不低,借助于已经实现的Ada和Spark 编程语言固件元素,依托于两种语言设计时就充分考虑可靠性、健壮性和安全性,能有效减少编写程序错误的可能性,还避免了重复造轮子的冗余重复工作,在软件生命周期早期检测代码缺陷,还能通过数学方法证明代码是否无错,提高软件验证效率,降低软件故障或被利用的风险。

3.3 数据模拟减少物理世界依赖、提升验证有效性

       实际落地中收集传感器数据是相当困难的一件工作,无论是训练过程测试验证过程,靠人为构造可能与现实差异很大,靠实际上路收集又费时费力并且带来安全性危险,NVIDIA Omniverse 和 Cosmos 恰好匹配这一需求,其强大的仿真效果,可生成大量多样化的传感器数据,用于模拟训练和验证实际应用中的数据,这样可大大减少在实际测试中对真实传感器的依赖,通过模拟与实测相结合的方式,不仅可有效降低测试成本,并且可有效遍历模拟覆盖各类组合场景,例如能够模拟出从阳光明媚的高速公路到暴雪覆盖的街道等无数种复杂且真实的驾驶场景,再例如模拟出停止标志、人行横道及施工区域等道路情况,更例如突然闯入道路的动物、道路上的异物、异常的交通管制等极端异常情况。

       可见,依托于上述的强大能力,Nvidia系统正在通过先进的 AI 算法与感知技术、高仿真测试手段以及完善的安全保障体系,成功地解决了高级辅助驾驶实际应用落地过程中的诸多关键问题。通过实际落地应用可以看出,不仅提升了高级辅助驾驶系统的性能和安全性,还加速了高级辅助驾驶技术从研发到实际应用的进程,为未来智能交通的发展奠定了坚实基础,推动着高级辅助驾驶技术在更广泛领域的普及和应用。


白皮书:高级辅助驾驶安全报告http:// https://img-bss.csdnimg.cn/bss/NVIDIA/auto-self-driving-safety-report-ZH%20%28Mar%20updated%29.pdf

NVIDIA 高级辅助驾驶实验室活动https://marketing.csdn.net/p/54ce0f507fc676a9f8a5b8a179b0e49a?pId=2952

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值