1、MQ的概念
1.1、什么是MQ
MQ(message queue)本质是个队列,FIFO 先入先出,只不过队列中存放的内容是message 而已,还是一种跨进程的通信机制,用于上下游传递消息。在互联网架构中,MQ 是一种非常常见的上下游“逻辑解耦+物理解耦”的消息通信服务。使用了 MQ 之后,消息发送上游只需要依赖 MQ,不用依赖其他服务。
1.2、为什么使用MQ
- 流量消峰。
举个例子,如果订单系统最多能处理一万次订单,这个处理能力应付正常时段的下单时绰绰有余,正
常时段我们下单一秒后就能返回结果。但是在高峰期,如果有两万次下单操作系统是处理不了的,只能限制订单超过一万后不允许用户下单。使用消息队列做缓冲,我们可以取消这个限制,把一秒内下的订单分散成一段时间来处理,这时有些用户可能在下单十几秒后才能收到下单成功的操作,但是比不能下单的体验要好。 - 应用解耦
以电商应用为例,应用中有订单系统、库存系统、物流系统、支付系统。用户创建订单后,如果耦合调用库存系统、物流系统、支付系统,任何一个子系统出了故障,都会造成下单操作异常。当转变成基于消息队列的方式后,系统间调用的问题会减少很多,比如物流系统因为发生故障,需要几分钟来修复。在这几分钟的时间里,物流系统要处理的内存被缓存在消息队列中,用户的下单操作可以正常完成。当物流系统恢复后,继续处理订单信息即可,中单用户感受不到物流系统的故障,提升系统的可用性。 - 异步处理
有些服务间调用是异步的,例如 A 调用 B,B 需要花费很长时间执行,但是 A 需要知道 B 什么时候可以执行完,以前一般有两种方式,A 过一段时间去调用 B 的查询 api 查询。或者 A 提供一个 callback api,B 执行完之后调用 api 通知 A 服务。这两种方式都不是很优雅,使用消息总线,可以很方便解决这个问题,A 调用 B 服务后,只需要监听 B 处理完成的消息,当 B 处理完成后,会发送一条消息给 MQ,MQ 会将此消息转发给 A 服务。这样 A 服务既不用循环调用 B 的查询 api,也不用提供 callback api。同样 B 服务也不用做这些操作。A 服务还能及时的得到异步处理成功的消息。
1.3、MQ的分类
-
.ActiveMQ
优点:单机吞吐量万级,时效性 ms 级,可用性高,基于主从架构实现高可用性,消息可靠性较
低的概率丢失数据。
缺点:官方社区现在对 ActiveMQ 5.x 维护越来越少,高吞吐量场景较少使用。 -
.Kafka
大数据的杀手锏,谈到大数据领域内的消息传输,则绕不开 Kafka,这款为大数据而生的消息中间件,
以其百万级 TPS 的吞吐量名声大噪,迅速成为大数据领域的宠儿,在数据采集、传输、存储的过程中发挥着举足轻重的作用。目前已经被 LinkedIn,Uber, Twitter, Netflix 等大公司所采纳。优点: 性能卓越,单机写入 TPS 约在百万条/秒,最大的优点,就是吞吐量高。时效性 ms 级可用性非常高,kafka 是分布式的,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用,消费者采用 Pull 方式获取消息, 消息有序, 通过控制能够保证所有消息被消费且仅被消费一次;有优秀的第三方Kafka Web 管理界面 Kafka-Manager;在日志领域比较成熟,被多家公司和多个开源项目使用;功能支持:功能较为简单,主要支持简单的 MQ 功能,在大数据领域的实时计算以及日志采集被大规模使用。
缺点:Kafka 单机超过 64 个队列/分区,Load 会发生明显的飙高现象,队列越多,load 越高,发送消息响应时间变长,使用短轮询方式,实时性取决于轮询间隔时间,消费失败不支持重试;支持消息顺序,但是一台代理宕机后,就会产生消息乱序,社区更新较慢;
-
RocketMQ
RocketMQ 出自阿里巴巴的开源产品,用 Java 语言实现,在设计时参考了 Kafka,并做出了自己的一些改进。被阿里巴巴广泛应用在订单,交易,充值,流计算,消息推送,日志流式处理,binglog 分发等场景。
优点:单机吞吐量十万级,可用性非常高,分布式架构,消息可以做到 0 丢失,MQ 功能较为完善,还是分布式的,扩展性好,支持 10 亿级别的消息堆积,不会因为堆积导致性能下降,源码是 java 我们可以自己阅读源码,定制自己公司的 MQ。
缺点:支持的客户端语言不多,目前是 java 及 c++,其中 c++不成熟;社区活跃度一般,没有在 MQ核心中去实现 JMS 等接口,有些系统要迁移需要修改大量代码。 -
RabbitMQ
2007 年发布,是一个在 AMQP(高级消息队列协议)基础上完成的,可复用的企业消息系统,是当前最主流的消息中间件之一。
优点:由于 erlang 语言的高并发特性,性能较好;吞吐量到万级,MQ 功能比较完备,健壮、稳定、易用、跨平台、支持多种语言 如:Python、Ruby、.NET、Java、JMS、C、PHP、ActionScript、XMPP、STOMP等,支持 AJAX 文档齐全;开源提供的管理界面非常棒,用起来很好用,社区活跃度高;更新频率相当高。https://www.rabbitmq.com/news.html
缺点:商业版需要收费,学习成本较高。
1.4、MQ 的选择
1.Kafka
Kafka 主要特点是基于 Pull 的模式来处理消息消费,追求高吞吐量,一开始的目的就是用于日志收集
和传输,适合产生大量数据的互联网服务的数据收集业务。大型公司建议可以选用,如果有日志采集功能,肯定是首选 kafka 了。
2.RocketMQ
天生为金融互联网领域而生,对于可靠性要求很高的场景,尤其是电商里面的订单扣款,以及业务削
峰,在大量交易涌入时,后端可能无法及时处理的情况。RoketMQ 在稳定性上可能更值得信赖,这些业务场景在阿里双 11 已经经历了多次考验,如果你的业务有上述并发场景,建议可以选择 RocketMQ。
3.RabbitMQ
结合 erlang 语言本身的并发优势,性能好时效性微秒级,社区活跃度也比较高,管理界面用起来十分
方便,如果你的数据量没有那么大,中小型公司优先选择功能比较完备的 RabbitMQ。
2、RabbitMQ
2.1、RabbitMQ的概念
RabbitMQ 是一个消息中间件:它接受并转发消息。你可以把它当做一个快递站点,当你要发送一个包
裹时,你把你的包裹放到快递站,快递员最终会把你的快递送到收件人那里,按照这种逻辑 RabbitMQ 是一个快递站,一个快递员帮你传递快件。RabbitMQ 与快递站的主要区别在于,它不处理快件而是接收,存储和转发消息数据。
2.2、四大核心概念
- 生产者
产生数据发送消息的程序是生产者。 - 交换机
交换机是 RabbitMQ 非常重要的一个部件,一方面它接收来自生产者的消息,另一方面它将消息
推送到队列中。交换机必须确切知道如何处理它接收到的消息,是将这些消息推送到特定队列还是推送到多个队列,亦或者是把消息丢弃,这个得有交换机类型决定。 - 队列
队列是 RabbitMQ 内部使用的一种数据结构,尽管消息流经 RabbitMQ 和应用程序,但它们只能存
储在队列中。队列仅受主机的内存和磁盘限制的约束,本质上是一个大的消息缓冲区。许多生产者可以将消息发送到一个队列,许多消费者可以尝试从一个队列接收数据。这就是我们使用队列的方式 - 消费者
消费与接收具有相似的含义。消费者大多时候是一个等待接收消息的程序。请注意生产者,消费
者和消息中间件很多时候并不在同一机器上。同一个应用程序既可以是生产者又是可以是消费者。
3、RabbitMQ的入门
案例:用 Java 编写两个程序。发送单个消息的生产者和接收消息并打印出来的消费者。
pom依赖:
<dependencies>
<dependency>
<groupId>com.rabbitmq</groupId>
<artifactId>amqp-client</artifactId>
<version>5.8.0</version>
</dependency>
<dependency>
<groupId>commons-io</groupId>
<artifactId>commons-io</artifactId>
<version>2.6</version>
</dependency>
</dependencies>
消息生产者:发送消息
/**
* 生产者:发消息
*/
public class Producer {
//队列名称
public static final String QUEUE_NAME = "hello";
public static void main(String[] args) throws IOException, TimeoutException {
//1、创建工厂连接
ConnectionFactory factory = new ConnectionFactory();
//2、连接rabbitmq
factory.setHost("120.78.133.81");
factory.setUsername("admin");
factory.setPassword("123");
//3、创建连接
Connection connection = factory.newConnection();
//4、获取信道
Channel channel = connection.createChannel();
//5、生成队列
/**
* 生成一个队列
* 1.队列名称
* 2.队列里面的消息是否持久化 默认消息存储在内存中
* 3.该队列是否只供一个消费者进行消费 是否进行共享 true 可以多个消费者消费
* 4.是否自动删除 最后一个消费者端开连接以后 该队列是否自动删除 true 自动删除
* 5.其他参数
*/
channel.queueDeclare(QUEUE_NAME,false,false,false,null);
//发消息
String message = "Hello World";
channel.basicPublish("",QUEUE_NAME,null,message.getBytes());
}
}
消息消费者:
/**
* 消费者
*/
public class Consumer {
public static final String QUEUE_NAME = "hello";
public static void main(String[] args) throws IOException, TimeoutException {
//1、创建工厂连接
ConnectionFactory factory = new ConnectionFactory();
//2、连接rabbitmq
factory.setHost("120.78.133.81");
factory.setUsername("admin");
factory.setPassword("123");
//3、创建连接
Connection connection = factory.newConnection();
//4、获取信道
Channel channel = connection.createChannel();
//5、接收消息
//回调声明接收消息
DeliverCallback deliverCallback = (consumerTag,message)->{
System.out.println(new String(message.getBody()));
};
//取消消息
CancelCallback cancelCallback = consumerTag ->{
System.out.println("接收消息中断");
};
/**
* 消费者消费消息
* 1.消费哪个队列
* 2.消费成功之后是否要自动应答 true 代表自动应答 false 手动应答
* 3.消费者未成功消费的回调
*/
channel.basicConsume(QUEUE_NAME,true,deliverCallback,cancelCallback);
}
}
4、Work Queues
工作队列(又称任务队列)的主要思想是避免立即执行资源密集型任务,而不得不等待它完成。
相反我们安排任务在之后执行。我们把任务封装为消息并将其发送到队列。在后台运行的工作进程将弹出任务并最终执行作业。当有多个工作线程时,这些工作线程将一起处理这些任务。
4.1 轮训分发消息
在这个案例中我们会启动两个工作线程,一个消息发送线程。
发送线程:
/**
* 生产者:发消息
*/
public class Task01 {
//队列名称
public static final String QUEUE_NAME = "hello";
public static void main(String[] args) throws IOException, TimeoutException {
//5、生成队列
Channel channel = RabbitmqUtil.getChannel();
/**
* 生成一个队列
* 1.队列名称
* 2.队列里面的消息是否持久化 默认消息存储在内存中
* 3.该队列是否只供一个消费者进行消费 是否进行共享 true 可以多个消费者消费
* 4.是否自动删除 最后一个消费者端开连接以后 该队列是否自动删除 true 自动删除
* 5.其他参数
*/
channel.queueDeclare(QUEUE_NAME,false,false,false,null);
//发送大量消息
String message = "Hello World";
for (int i = 0; i < 10000; i++) {
channel.basicPublish("",QUEUE_NAME,null,(message+i).getBytes());
}
}
}
接收线程:
/**
* 工作线程01
*/
public class Worker01 {
public static final String QUEUE_NAME = "hello";
public static void main(String[] args) throws IOException, TimeoutException {
//获取通道
Channel channel = RabbitmqUtil.getChannel();
//5、接收消息
//回调声明接收消息
DeliverCallback deliverCallback = (consumerTag, message) -> {
System.out.println("接收到的消息:"+new String(message.getBody()));
};
//取消消息
CancelCallback cancelCallback = consumerTag -> {
System.out.println("接收消息中断");
};
/**
* 消费者消费消息
* 1.消费哪个队列
* 2.消费成功之后是否要自动应答 true 代表自动应答 false 手动应答
* 3.消费者未成功消费的回调
*/
System.out.println("C1线程等待消费消息");
channel.basicConsume(QUEUE_NAME, true, deliverCallback, cancelCallback);
}
}
命令行参数开启第二个进程。
打印结果:
C1:
C1线程等待消费消息
接收到的消息:Hello World0
接收到的消息:Hello World2
接收到的消息:Hello World4
接收到的消息:Hello World6
接收到的消息:Hello World8
接收到的消息:Hello World10
接收到的消息:Hello World12
接收到的消息:Hello World14
接收到的消息:Hello World16
接收到的消息:Hello World18
接收到的消息:Hello World20
接收到的消息:Hello World22
接收到的消息:Hello World24
接收到的消息:Hello World26
接收到的消息:Hello World28
C2:
C2线程等待消费消息
接收到的消息:Hello World1
接收到的消息:Hello World3
接收到的消息:Hello World5
接收到的消息:Hello World7
接收到的消息:Hello World9
接收到的消息:Hello World11
接收到的消息:Hello World13
接收到的消息:Hello World15
接收到的消息:Hello World17
接收到的消息:Hello World19
接收到的消息:Hello World21
接收到的消息:Hello World23
接收到的消息:Hello World25
接收到的消息:Hello World27
接收到的消息:Hello World29
接收到的消息:Hello World31
接收到的消息:Hello World33
以轮询的方式消费消息。
4.2 消息应答
4.2.1、概念
消费者完成一个任务可能需要一段时间,如果其中一个消费者处理一个长的任务并仅只完成了部分突然它挂掉了,会发生什么情况。RabbitMQ 一旦向消费者传递了一条消息,便立即将该消息标记为删除。在这种情况下,突然有个消费者挂掉了,我们将丢失正在处理的消息。以及后续发送给该消费这的消息,因为它无法接收到。
为了保证消息在发送过程中不丢失,rabbitmq 引入消息应答机制,消息应答就是:消费者在接
收到消息并且处理该消息之后,告诉 rabbitmq 它已经处理了,rabbitmq 可以把该消息删除了。
4.2.2、自动应答
消息发送后立即被认为已经传送成功,这种模式需要在高吞吐量和数据传输安全性方面做权衡,因为这种模式如果消息在接收到之前,消费者那边出现连接或者 channel 关闭,那么消息就丢失了,当然另一方面这种模式消费者那边可以传递过载的消息,没有对传递的消息数量进行限制,当然这样有可能使得消费者这边由于接收太多还来不及处理的消息,导致这些消息的积压,最终使得内存耗尽,最终这些消费者线程被操作系统杀死,所以这种模式仅适用在消费者可以高效并以某种速率能够处理这些消息的情况下使用。
4.2.3、消息应答的方法
- Channel.basicAck(用于肯定确认)
RabbitMQ 已知道该消息并且成功的处理消息,可以将其丢弃了 - Channel.basicNack(用于否定确认)
- Channel.basicReject(用于否定确认)
与 Channel.basicNack 相比少一个参数
不处理该消息了直接拒绝,可以将其丢弃了
4.2.4 消息自动重新入队
如果消费者由于某些原因失去连接(其通道已关闭,连接已关闭或 TCP 连接丢失),导致消息未发送 ACK 确认,RabbitMQ 将了解到消息未完全处理,并将对其重新排队。如果此时其他消费者可以处理,它将很快将其重新分发给另一个消费者。这样,即使某个消费者偶尔死亡,也可以确保不会丢失任何消息。