扩展欧几里得算法思路分析以及扩展

扩展欧几里得算法

思路分析:

根据裴蜀定理知:

gcd(a, b): a 和 b 的最大公约数

对于任意一对正整数a, b, 那么一定存在整数x, y, 使得ax + by = gcd(a, b)

ax + by = d, d 一定是 gcd(a, b)的倍数,且其最小正整数就是gcd(a,b)

证明:

因为a 是 gcd(a,b)的倍数,b 也是gcd(a,b)的倍数,所以ax + by 也一定是gcd(a,b)倍数,正整数倍数最小为1倍即gcd(a,b)

扩展欧几里得算法(exgcd):

用于求解ax + by = gcd(a,b)中x, y 的解。

根据b = 0 与否进行分类讨论:

1)b == 0

ax + by = gcd(a, b)

ax + 0 *y = gcd(a, 0)

ax = a

故而求得解:x = 1, y = 0

2 )b != 0

根据辗转相除法知:gcd(a, b) = gcd(b, a %b)

请添加图片描述

题目:

给定 n 对正整数 ai,bi,对于每对数,求出一组 xi,yi,使其满足 ai×xi+bi×yi=gcd(ai,bi)。

输入格式

第一行包含整数 n。

接下来 n 行,每行包含两个整数 ai,bi。

输出格式

输出共 n 行,对于每组 ai,bi,求出一组满足条件的 xi,yi,每组结果占一行。

本题答案不唯一,输出任意满足条件的 xi,yi 均可。

数据范围

1≤n≤105,
1≤ai,bi≤2×109

输入样例:
2
4 6
8 18
输出样例:
-1 1
-2 1
实现代码:
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
int n,a,b,x,y;
void exgcd(int a,int b,int &x,int &y){
    if(b==0){
        x=1;y=0;
        return;
    }
    int x1,y1;
    exgcd(b,a%b,x1,y1);
    x=y1;y=x1-a/b*y1;
}
int main()
{
    cin>>n;
    while(n--){
        cin>>a>>b;
        exgcd(a,b,x,y);
        cout<<x<<" "<<y<<endl;
    }
    return 0;
}
扩展:

1、对于一般方程的求解:ax + by = c

这个是不是和我们的扩展欧几里得算法很像,我们只需要将欧几里得算出来的答案x和y的解,都乘以c/gcd(a,b)即可。

证明:

求解ax’ + by‘ = c

因为:ax + by = d

(ax + by) * c/d = d * c/d

(ax + by) * c/d = c

a(x * c/d) + b(y * c/d) = c

得x’和y‘的解:x‘ = x * c/d, y‘ = y * c/d

2、求解一次同余方程ax ≡ b (mod p)

ax ≡ b (mod p)

ax = p * (-y) + b

ax + py = b

当gcd(a, p)| b,然后用扩展欧几里得求解即可

特别当b = 1,且a和p互质,所求x为a的逆元。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值