【刷题打卡】day1 - 字符串string

从现在开始每天至少刷一道题。
题库:lintcode

1790. Rotate String II

题目链接
难度:easy
算法:字符串操作

解题思路
总偏移量offset = left - right。
如果总偏移量>0, 字符串往左偏移, offset从起点开始偏移,把[0, offset], [offset, string长度]两边子字符串交换一下。
如果right > left. 字符串往右偏移,offset从终点开始偏移, 把[0, string长度-offset]和[string长度-offset, string长度]两边的子字符串交换一下。

注意:当偏移量超过字符串的长度时,通过取模(%)方法获得小于字符串的长度的偏移量

解法

public class Solution {
    /**
     * @param str: A String
     * @param left: a left offset
     * @param right: a right offset
     * @return: return a rotate string
     */
    public String RotateString2(String str, int left, int right) {
        // write your code here
        int offset = (left - right) % str.length();
        
        // left, truncate the first offset characters
        if (offset > 0){
            str = str.substring(offset) + str.substring(0, offset);
        }else if(offset < 0){
            offset = str.length() - Math.abs(offset);
            str = str.substring(offset) + str.substring(0, offset);
            
        }
        return str;
        
        
        
     
    }
}

667. Longest Palindromic Subsequence

题目链接
难度:median
算法:动态规划

解题思路
一看到题目求最值,优先考虑动态规划。
对于任意长度字符串, 如果首尾字符相等,那么最长子序列等于去掉首尾的子字符串的最长子序列加上首尾;如果首尾字符不相等,那么最长子序列等于去掉首的子字符串的最长子序列和去掉尾的子字符串的最长子序列的最大值

dp[i][j]表示从i到j的子字符串最长回文子序列的长度。
when s[i] == s[j] , dp[i][j] = dp[i+1][j-1] + 2;
when s[i] != s[j], dp[i][j] = Math.max(dp[i+1][j], dp[i][j-1]);
嵌套循环, i依次递减,j依次递增。

解法

public class Solution {
    /**
     * @param s: the maximum length of s is 1000
     * @return: the longest palindromic subsequence's length
     */
    public int longestPalindromeSubseq(String s) {
        // write your code here
        if (s == null || s.length() == 0){
            return 0;
        }
        // state: the maximum length of palindromic subsequence in substring(i,j)
        int n = s.length();
        int[][] dp = new int[n][n];
        
        //init
        for(int i=0;i< n; i++){
            dp[i][i] = 1;
        }
        for(int i=n-1;i>=0;i--){
            for(int j=i+1;j<n;j++){
                //function
                if (s.charAt(i) == s.charAt(j)){
                    dp[i][j] = dp[i+1][j-1] + 2;
                }else{
                    dp[i][j] = Math.max(dp[i+1][j], dp[i][j-1]);
                }
            }
        }
        
        return dp[0][n-1];
        
    }
}

注意:当j = i+1, dp[i][i+1] = dp[i+1][i] + 2, dp[i+1][i] = 0, 因为初始化后值都为0.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值