多重背包

本文参考dd_engi的《背包问题九讲》。
状态转移方程 \[f[i][j]=\max{\begin{Bmatrix} f[i-1][j-k \times w[i]]+k \times v[i] | 0 \leqslant k \leqslant m[i] \end{Bmatrix} } \]对于朴素的做法,将每种物品拆分成\(m[i]\)个01背包进行求解,但复杂度高达\(O(V \sum^{n}_{i=1} M_i)\),难以接受。
考虑二进制优化,将每种物品拆分成\(1,2,2^2,...,2^{k-1},M_i-2^k+1\)个,这样可保证可以凑出任意小于等于\(M_i\)的数。优化后的复杂度为\(O(V \sum^{n}_{i=1} \log M_i)\),较为优秀。
上代码:

#include <cstdio>
#include <algorithm>
using namespace std;
int n,V; //物品个数,背包容量
int f[40005],m[100005],w[100005],v[100005]; //f为递推数组,m为每种物品的个数,w为体积,v为价值
int main()
{
    scanf("%d%d",&n,&V);
    for(int i=1;i<=n;++i)
        scanf("%d%d%d",&v[i],&w[i],&m[i]);
    for(int i=1;i<=n;++i)
    {
        if(w[i]*m[i]>=V)    //先判断个数是否足够用,如果可以直接当完全背包做
        {
            for(int j=w[i];j<=V;++j)
                f[j]=max(f[j],f[j-w[i]]+v[i]);
            continue;
        }
        for(int k=1;k<m[i];m[i]-=k,k<<=1)   //二进制优化
            for(int j=V;j>=k*w[i];--j)      //每个拆分看作是一个物品,当作01背包解
                f[j]=max(f[j],f[j-k*w[i]]+k*v[i]);
        for(int j=V;j>=m[i]*w[i];--j)       //求剩下的
            f[j]=max(f[j],f[j-m[i]*w[i]]+m[i]*v[i]);
    }
    printf("%d",f[V]);
    return 0;
}

有时我们只考虑填满背包的可行性,而不关心具体的价值,那么此时有一种\(O(VN)\)的做法:设\(f[i][j]\)表示“用前\(i\)种物品填满容量为\(j\)的背包后,最多还剩下几个第\(i\)种物品可用”,代码如下:

memset(f,-1,sizeof(f));
f[0][0]=0;
for(int i=1;i<=n;++i)
{
    for(int j=0;j<=V;++j)
        if(f[i-1][j]>=0) 
            f[i][j]=m[i];
    for(int j=0;j<=V-w[i];++j)
        if(f[i][j]>0)
            f[i][j+w[i]]=max(f[i][j+w[i]],f[i][j]-1);
}

转载于:https://www.cnblogs.com/wzzyr24/p/11444266.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值