【BZOJ2693】jzptab

题目大意

给定\(n,m,(1\leq n,m \leq 1e7)\),求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),答案对\(1e8+9\)取模,\(T(1\leq T \leq 1e4)\)组询问。

题目分析

前半部分同【2011集训贾志鹏】Crash 的数字表格

但是,由于多组询问,原来的\(O(n)\)做法已经无法满足要求,所以,我们需要更优秀的\(O(\sqrt n)\)做法。

以下式子从【2011集训贾志鹏】Crash 的数字表格的最后一步开始化简。
\[ \begin{split} ans &=\sum\limits_{d=1}^n d\cdot f(1)\\ &=\sum\limits_{d=1}^n d\cdot \sum\limits_{i=1}^{\lfloor\frac n d\rfloor}\mu(i)\cdot g(i)\\ &=\sum\limits_{d=1}^n d\cdot \sum\limits_{i=1}^{\lfloor\frac n d\rfloor}\mu(i)\cdot i\cdot i\cdot sum(\lfloor\frac n {di}\rfloor)\cdot sum(\lfloor\frac m {di}\rfloor)\\ &=\sum\limits_{i=1}^n\mu(i)\cdot i^2\sum\limits_{d=1}^{\lfloor\frac ni\rfloor}sum(\lfloor\frac n{di}\rfloor)\cdot sum(\lfloor\frac m{di}\rfloor)\cdot d\\ &=\sum\limits_{i=1}^n\mu(i)\cdot i^2\sum\limits_{i|T}^nsum(\lfloor\frac nT\rfloor)\cdot sum(\lfloor\frac mT\rfloor)\cdot \frac Ti\\ &=\sum\limits_{T=1}^nsum(\lfloor\frac nT\rfloor)\cdot sum(\lfloor\frac mT\rfloor)\sum\limits_{i|T}\mu(i)\cdot i^2\cdot \frac Ti\\ &=\sum\limits_{T=1}^nsum(\lfloor\frac nT\rfloor)\cdot sum(\lfloor\frac mT\rfloor)\sum\limits_{i|T}\mu(i)\cdot i\cdot T\\ &=\sum\limits_{T=1}^nsum(\lfloor\frac nT\rfloor)\cdot sum(\lfloor\frac mT\rfloor)\cdot T\sum\limits_{i|T}\mu(i)\cdot i\\ \end{split} \]

其中\(sum(i)=\frac{(1+i)\cdot(i)}{2}\),可以直接计算出;\(\sum\limits_{i|T}\mu(i)\cdot i\)不是积性函数,但仍可以预处理出。

套上整除分块,这个算法的时间复杂度便达到了\(O(\sqrt n)\),可以满足题目要求。

代码实现

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=1e7+5,mod=1e8+9;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int g[N],prime[N];
bool vis[N];
int sum(int x){return 1ll*(1+x)*x/2%mod;}
int main(){
    g[1]=1;
    for(int i=2;i<=1e7;i++){
        if(!vis[i])prime[++prime[0]]=i,g[i]=1-i;
        for(int j=1;j<=prime[0]&&1ll*i*prime[j]<=1e7;j++){
            vis[i*prime[j]]=1;
            if(i%prime[j]==0){
                g[i*prime[j]]=g[i];
                break;
            }
            g[i*prime[j]]=(g[i]-1ll*prime[j]*g[i])%mod;
        }
    } 
    for(int i=1;i<=1e7;i++)g[i]=(1ll*g[i]*i+g[i-1])%mod;
    
    int T=Getint();
    while(T--){
        int n=Getint(),m=Getint();
        if(n>m)swap(n,m);
        int ans=0;
        for(int l=1,r;l<=n;l=r+1){
            r=min(n/(n/l),m/(m/l));
            ans=(ans+1ll*sum(n/l)*sum(m/l)%mod*(g[r]-g[l-1])%mod)%mod; 
        }
        cout<<(ans+mod)%mod<<'\n';
    }
    return 0;
}

转载于:https://www.cnblogs.com/Emiya-wjk/p/10002006.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值