题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2154
题意理解:
给你n和m,求所有的lcm(i,j)之和,1<=i<=n,1<=j<=m;
很经典的莫比乌斯反演例题,从这里能真正发现它的牛皮之处。
学习这个算法需要有一点预备的知识,数论分块和唯一分解定理。
关于数论分块这里有一篇很不错的文章:https://www.cnblogs.com/henry-1202/p/10121854.html
其实原理很好理解,就是枚举对象变了,同时利用函数部分区间值相等的性质进行优化,大概可以优化到O(sqrt(n)).
唯一分解定理可以去百度一下,其实就是任意一个数都可以被拆成质数相乘的性质。
先简单的讲一下莫比乌斯反演,其实就两个公式,最常用的也就一个。
具体内容可以参考这个大佬的博客:https://www.cnblogs.com/cjyyb/p/8305710.html
注意一定要自己推一下公式,写一下,并且想一下为什么
然后推导过程不是很清楚的可以去b站上搜。
这个讲的虽然有点乱,但是当你感觉自己差不多懂的时候,再看这个可能就会恍然大悟!!!