BZOJ2693(BZOJ2154)——莫比乌斯反演经典例题

题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2154

题意理解:

给你n和m,求所有的lcm(i,j)之和,1<=i<=n,1<=j<=m;

很经典的莫比乌斯反演例题,从这里能真正发现它的牛皮之处。

学习这个算法需要有一点预备的知识,数论分块和唯一分解定理。

关于数论分块这里有一篇很不错的文章:https://www.cnblogs.com/henry-1202/p/10121854.html

其实原理很好理解,就是枚举对象变了,同时利用函数部分区间值相等的性质进行优化,大概可以优化到O(sqrt(n)).

唯一分解定理可以去百度一下,其实就是任意一个数都可以被拆成质数相乘的性质。

先简单的讲一下莫比乌斯反演,其实就两个公式,最常用的也就一个。

具体内容可以参考这个大佬的博客:https://www.cnblogs.com/cjyyb/p/8305710.html

注意一定要自己推一下公式,写一下,并且想一下为什么

然后推导过程不是很清楚的可以去b站上搜。

这个讲的虽然有点乱,但是当你感觉自己差不多懂的时候,再看这个可能就会恍然大悟!!!

https://www.bilibili.com/v

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值