- 博客(49)
- 收藏
- 关注
原创 任务28:绘制1-12月各城市平均气温可视化图形
任务描述任务指导1、渲染和查看模板在资料中已经提供了词云对照模板,先通过构建视图函数word_sample和配置路由word_sample/来渲染该对照模板,渲染后模板如下:2、读取和处理词云数据数据存于MySQL中的city_temp表中,其字段如下:需要进行以下处理:1)由于气温的膨胀因子为10,也就是说是原始数据的10倍,因此需要将获取的数据除以10。
2025-06-04 08:45:00
810
原创 任务29:绘制1-12月平均降水量城市TOP10可视化图形
本文介绍了使用Django和ECharts绘制降水量TOP10城市条形图的完整流程。首先参考ECharts官网柱状图示例,调整配置项改为条形图并添加标题。然后从MySQL数据库读取城市降水数据,处理数据时将降水量除以10(去除膨胀因子),并按月份构建字典格式的数据结构。接着详细说明了如何修改图表样式:包括标题样式、坐标轴设置(去除分割线、添加刻度线)、柱状图渐变颜色效果等。最后实现了数据动态更新功能,使图表能随月份切换自动重新渲染,并调整了条形图排序(从大到小)。整个过程涵盖了数据获取、处理、可视化配置等关
2025-06-04 08:45:00
610
1
原创 任务30:项目任务部署与测试
本文介绍了Django项目部署到服务器的完整流程。首先通过pip freeze生成requirements.txt文件,打包项目并上传至服务器。随后详细说明了在服务器上安装Python3.9的过程,包括解压安装文件、配置编译环境、建立软连接等步骤。重点讲解了依赖包的批量安装方法,以及通过修改配置文件解决SQLite3版本兼容性问题。最后配置settings.py文件并启动Django服务完成测试。整个过程涵盖了从项目打包、环境搭建到服务测试的完整部署流程,为Django项目的服务器部署提供了实用指导。
2025-06-04 08:45:00
1470
原创 任务27:绘制1-12月各省份平均气压可视化图形
本文介绍了基于Django和ECharts的矩形树图实现方法。首先参考ECharts官网示例,调整矩形树图配置项,去除子节点和面包屑导航。然后从MySQL数据库读取省份气压数据,进行数据预处理(除以膨胀因子10),并按月份构建符合ECharts格式的树形数据字典。接着在Django视图中传递处理后的数据到模板,通过JavaScript调用ECharts API绘制矩形树图,并配置标题、边距等属性。最终实现了一个动态展示2022年各省份各月份气压情况的可视化矩形树图,能够随月份变化自动更新显示。整个方案涵盖了
2025-06-04 08:00:00
582
1
原创 任务26:绘制1-12月各省份平均气温和预测可视化图形(折线
任务描述任务指导1、绘制列表框,能够切换不同的省份需要绘制的图形如下:因此需要添加一个列表框,该列表框中的选项为所有的省份,通过改变列表框中的选项,折线图能够获取到该省份的数据,然后绘制该省份的图形。
2025-06-02 22:30:00
630
1
原创 任务25:绘制全局时间线(TimeLine)
任务描述任务指导1、参考ECharts官网示例:(https://echarts.apache.org/examples/zh/index.html),示例图形如下:2、创建timeline.js,绘制时间线图参考ECharts官网示例代码,定义timeline()绘图函数,其中定义months变量,将playInterval数据中的1000换成之前定义的全局变量time_interval,data配置想换成months,label配置项去掉。3、引入js文件,并调用绘图函数。
2025-06-02 14:15:00
870
原创 任务22:创建示例Django项目,展示ECharts图形示例
任务描述任务指导1、创建web_test的Django项目2、了解Echarts基本的图表类型模板,api接口和配置项,请参考官方文档:https://echarts.apache.org/examples/zh/index.html。针对Echarts官网中的示例DEMO,挑选具有代表性的样例进行练习。3、完成Django项目,并通过配置项进行修改图形。任务实现。
2025-06-01 11:30:00
896
1
原创 任务17:时间序列的基本特征
时间序列是指社会经济现象在不同时间上的一系列指标值,按时间先后顺序加以排列而形成的数列。时间数列两个要素:现象所属的时间t和与这些时间相对应的统计指标数值yt。时间序列模型,顾名思义,时间序列是时间间隔不变的情况下收集的时间点集合。这些集合被分析用来了解长期发展趋势,为了预测未来或者表现分析的其他形式。
2025-05-30 09:00:00
886
原创 任务16:使用Sqoop将Hive结果数据导入到MySQL
任务描述任务指导Sqoop是一个用来将Hadoop和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(例如 :MySQL ,Oracle ,Postgres等)中的数据导入到Hadoop的HDFS中,也可以将HDFS的数据导入到关系型数据库中。本次任务的内容为使用Sqoop实现数据从MySQL 到HDFS的导入、导出。
2025-05-29 08:42:27
1030
1
原创 任务13:使用MapReduce对天气数据进行ETL(获取各基站ID)
当前在数据集中不包含基站编号字段,每个基站的编号体现在各个文件名的前5位,例如在“450010-99999-2000”文件中包含的是编号为“45001”的基站数据,所以需要将各个基站的编号添加到对应的数据文件中,并且在各个文件中每个字段之间的分隔符也是不一致的,所以也需要对数据进行清理,由于数据量较大,可以考虑使用MapReduce进行数据清理的工作。使用MapReduce对天气数据进行预处理,并在数据文件中添加对应基站ID,并将原来字段间的分隔符改为使用逗号分隔,以便于大Hive中使用该数据集。
2024-01-16 00:30:00
1550
原创 任务11:使用FTP下载NCDC气象数据
数据源为NCDC(美国国家气候数据中心,National Climatic Data Center),隶属于NOAA(美国国家海洋及大气管理局,National Oceanic and Atmospheric Administration)。数据来自NCDC的公开FTP服务器,本项目只选取了中国区域(含港澳台)的观测站点数据,按年打包。时间范围:1942年至今。时间精度:近年的数据大多为3小时数据,少量站点有1小时数据。站点数量:近年为400多个。
2024-01-15 16:45:00
4752
原创 任务9:安装配置Python开发环境
Anaconda指的是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。[1] 因为包含了大量的科学包,Anaconda 的下载文件比较大(约 531 MB),如果只需要某些包,或者需要节省带宽或存储空间,也可以使用Miniconda这个较小的发行版(仅包含conda和 Python)。2)PyCharm。
2024-01-15 10:30:00
997
原创 任务8:安装大数据统计分析工具Hive
Hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。Hive的优点是学习成本低,可以通过类似SQL语句实现快速MapReduce统计,使MapReduce变得更加简单,而不必开发专门的MapReduce应用程序。Hive十分适合对数据仓库进行统计分析。
2024-01-15 09:00:00
1052
原创 任务7:安装MySQL数据库
任务描述任务指导MySQL是一个由瑞典MySQL AB 公司开发,属于 Oracle 旗下产品。MySQL 是最流行的关系型数据库管理系统之一,在 WEB 应用方面,MySQL是最好的 RDBMS (Relational Database Management System,关系数据库管理系统) 应用软件之一。任务实现。
2024-01-15 08:00:00
990
原创 任务5:安装并配置Hadoop
任务描述任务指导Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。任务主要内容:下载安装Hadoop包,配置环境变量,配置Hadoop集群1. 创建Hadoop目录2. 解压Hadoop安装包3. 创建Hadoop数据存放的目录(例如:tmp、hdfs、hdfs/data、hdfs/name等目录)4. 配置Hadoop环境变量5. 修改Hadoop配置文件任务实现。
2024-01-14 07:00:00
1075
原创 任务3:配置SSH免密码连接--自用
任务描述任务指导Hadoop分布式集群是由多个节点组成,各节点之间需要通过网络访问,如果每次都需要输入密码,非常不方便,所以可以考虑设置各节点之间免密码连接。任务的内容为在各个节点配置SSH,首先在所有集群服务器节点上生成密钥对,然后再将公钥合并到一个公钥文件中,最后将该文件分发到所有节点,这样就可以实现各节点之间的免密码连通了。任务实现Hadoop分布式集群是由多个节点组成,各节点之间需要通过网络访问,如果每次都需要输入密码,非常不方便,所以可以考虑设置各节点之间免密码连接。
2024-01-12 07:00:00
1207
原创 西安科技大学824数据结构代码题(自用)2017
在入队函数中,通过来判断队列是否已满。如果队列已满,返回0表示入队失败。如果队列未满,将新元素放入队列的后端(使用循环队列的方式),然后更新rear指针。在出队函数中,通过来判断队列是否为空。如果队列为空,返回0表示出队失败。如果队列非空,将前端的元素取出(使用循环队列的方式),将其赋值给传入的指针x,然后更新front指针。// 队列已满,无法入队return 0;// 将新元素放入队列的后端,并更新rear指针return 1;// 入队成功// 队列为空,无法出队return 0。
2023-10-31 12:21:43
122
2
原创 西安科技大学824数据结构代码题(自用)2018年
要求:用自然语言说明思路,给出算法用的数据结构定义,并做出必要的注释。说明算法的复杂度和时间复杂度。用C语言写出对应的算法函数,并加上必要的注释。
2023-10-30 16:43:20
130
1
原创 西安科技大学824数据结构代码题(自用)2019年
首先,我们需要定义一个表示集合元素的结构体。每个结点包含一个数据域(代表集合元素)和一个指针域(用于连接下一个结点)。在这个问题中,我们需要两个链表,分别代表集合A和集合B。
2023-10-29 21:43:45
218
1
原创 西安科技大学824数据结构代码题(自用)2020
快速排序是一种分治算法,它的基本思想是通过一趟排序将待排序的记录分割成独立的两部分,其中一部分的所有记录都比另外一部分的记录小,然后再按此方法对这两部分记录分别进行快速排序,以达到整个序列有序的目的。该算法的平均时间复杂度为O(n log n),其中n为数组的长度。为了从顺序表L中删除所有值为X的元素,我们可以使用两个指针,一个用于遍历顺序表L,另一个用于记录不等于X的元素的位置。即将下标从low到high的元素以r[low]为基准分为两部分,小的在前,大的在后。2、设计算法,判断一个字符串是否是回文。
2023-10-28 19:25:58
146
1
原创 西安科技大学824数据结构代码题(自用)2021
可以利用图的遍历过程判断一个图是否联通,并可得到其连通分量,如果在遍历的过程中,不止一次调用遍历过程,则说明该图是非连通图。因此,想要判定一个无向图是否为联通图,或者有几个连通分量,可设计一个计数变量count,初始时取0,在深度优先遍历算法中,每次调用一次DepthFirstSearch,就给count增加一。1.已知两个单循环链表LA,LB,设计算法,将两个单循环链表首尾相连,并写出时间复杂度。3.请设计一个算法,判断一个无向图是否连通,如果不连通,请输出有几个联通分量,如果联通,请输出结点的序列。
2023-10-27 15:33:06
269
1
原创 pip install web3 Flask -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
pip install web3 Flask -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
2023-10-18 14:18:20
165
原创 pip install web3 Flask -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
pip install web3 Flask -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
2023-10-18 14:16:20
99
Wangluoanquan .py
2023-06-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人